期刊文献+

锑基硫属化合物半导体及太阳电池

Antimony-Based Chalcogenide Semiconductors and Solar Cells
下载PDF
导出
摘要 锑基硫属化合物是一类性质稳定、环境友好、元素含量丰富、带隙连续可调、光电性质优异的半导体材料,包括硒化锑(Sb_(2)Se_3)、硫化锑(Sb_(2)S_3)以及硒硫化锑[Sb_(2)(S,Se)_3]等。其中,Sb_(2)(S,Se)_3的带隙和太阳光谱的匹配度较高,比较适合作为太阳电池的光吸收层材料。以Sb_(2)(S,Se)3为光吸收层的太阳电池取得了10%的认证能量转换效率,显示了锑基硫属化合物太阳电池的巨大潜力。本文详细阐述了锑基硫属化合物的材料及光电特性、薄膜制备工艺及缺陷特性。结合近年来锑基硫属化合物太阳电池的研究迚展,提出迚一步提高锑基硫属化合物太阳电池性能的斱向和策略。 Antimony-based chalcogenides are a class of semiconductor materials with stable properties,environmentally friendly,rich element content,continuous adjustable band gap and excellent photoelectric properties,including antimony selenide(Sb2Se3),antimony sulfide(Sb2S3)and antimony selenosulfide[Sb2(S,Se)3].Among them,the band gap of Sb2(S,Se)3 matches well with the solar spectrum,so it is more suitable to be used as the absorber layer of solar cells.The solar cell with Sb2(S,Se)3 absorber has achieved a certified power conversion efficiency of 10%,showing the great potential of antimony-based chalcogenide solar cells.In this paper,the material and photoelectric properties,films preparation technology and defect characteristics of antimony-based chalcogenide were described in detail.Based on the research progress of antimony-based chalcogenide solar cells in recent years,the direction and strategy of further improving the device performance were proposed.
作者 刘聪 郑建楂 沈凯 麦耀华 LIU Cong;ZHENG Jian-zha;SHEN Kai;MAI Yao-hua(Institute of New Energy Technology,College of Information Science and Technology,Jinan University,Guangzhou 510632,China)
出处 《新能源进展》 2021年第3期186-197,共12页 Advances in New and Renewable Energy
基金 国家重点研収计划项目(2019YFB1503400)。
关键词 锑基硫属化合物 硒化锑 硫化锑 硒硫化锑 太阳电池 antimony-based chalcogenide antimony selenide antimony sulfide antimony selenosulfide solar cells
  • 相关文献

参考文献4

二级参考文献36

  • 1Tan Wang,Jianqiang Qin,Zuo Xiao,Xianyi Meng,Chuantian Zuo,Bin Yang,Hairen Tan,Junliang Yang,Shangfeng Yang,Kuan Sun,Suyuan Xie,Liming Ding.A 2.16 eV bandgap polymer donor gives 16%power conversion efficiency[J].Science Bulletin,2020,65(3):179-181. 被引量:14
  • 2Kim J, Hiroi H, Todorov T K, Gunawan O, Kuwahara M, Gokmen T, Nair D, Hopstaken M, Shin B, Lee Y S, Wang W, Sugimoto H, Mitzi D B 2014 Adv. Mater. DOI: 10.1002/adma.201402373. 被引量:1
  • 3Green M A, Ho-Baillie A, Snaith H J 2014 Nature Photon. 8 506. 被引量:1
  • 4Niu G, Li W, Meng F, Wang L, Dong H, Qiu Y 2014 J. Mater. Chem. A 2 705. 被引量:1
  • 5Lee Y S, Chua D, Brandt R E, Siah S C, Li J V, Mailoa J P, Lee S W, Gordon R G, Buonassisi T 2014 Adv. Mater. 26 4704. 被引量:1
  • 6Limpinsel M, Farhi N, Berry N, Lindemuth J, Perkins C L, Lin Q, Law M 2014 Energy Environ. Sci. 7 1974. 被引量:1
  • 7Sinsermsuksakul P, Sun L, Lee S W, Park H H, Kim S B, Yang C, Gordon R G 2014 Adv. Eng. Mater. DOI: 10.1002/aenm.201400496. 被引量:1
  • 8Zhou Y, Leng M, Xia Z, Zhong J, Song H, Liu X, Yang B, Zhang J, Chen J, Zhou K, Han J, Cheng Y, Tang J 2014 Adv. Eng. Mater. DOI: 10.1002/aenm.201301846. 被引量:1
  • 9Madelung O 2004 Semiconductor: Data Handbook (3rd Ed.) (New York: Springer-Verlag Berlin Heidelbergy) DOI: 10.1007/106817271042. 被引量:1
  • 10Filip M R, Patrick C E, Giustino F 2013 Phys. Rev. B 87 205125. 被引量:1

共引文献115

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部