期刊文献+

以多臂赌博机建模的多目标互动式推荐系统 被引量:1

Multiple Objective Interactive Recommender Systems Based on Multi-armed Bandits
下载PDF
导出
摘要 许多推荐技术(如协同过滤)存在以下不足,降低了用户的体验满意度和忠诚度:1)忽略了“用户兴趣和商品属性会随时间而改变”这一事实;2)过度追求预测准确性而牺牲了推荐多样性和新颖性.为此,提出一种能动态适应上述变化,同时优化推荐准确度、多样度和新颖度的互动式推荐系统.主要步骤:1)采用理想点法构造多目标优化函数;2)收集用户反馈信息,及时地更新推荐策略;3)基于多臂赌博机构建互动式推荐框架.实验表明,经过与用户不断地互动推荐,该系统的平均列表准确度、多样度和新颖度都在逐步提升. The existing recommender systems still face challenges below,resulting in less than satisfactory user experiences.They have overlooked the fact that user preference and item attribute change over time.Moreover,they provide improvement in accuracy usually at the expense of diversity and novelty.In this direction,we propose multiple objective interactive recommender systems which can better balance the conflicts in diversity,novelty and accuracy metrics and adapt to changes of user preference and item attribute.The models rely on three main components:multi-objective optimization functions built by the methods of ideal points,dynamic prioritization schemes for weighting quality metrics and recommendation technologies modeled by the multi-armed bandit algorithm.The experimental results show that the proposed algorithms provide the capability to respond to a change in user requirements in real time,and recommend lists of personalized items that are accurate,diverse and novel.
作者 何炜俊 艾丹祥 HE Wei-jun;AI Dan-xiang(School of Management,Guangdong University of Technology,Guangzhou 520520,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2021年第6期1192-1198,共7页 Journal of Chinese Computer Systems
基金 国家自然科学基金项目(71740024)资助.
关键词 推荐系统 多目标规划 多臂赌博机 互动式推荐 recommender systems multiple objective decision making multi-armed bandits interactive recommendations
  • 相关文献

参考文献3

二级参考文献24

  • 1LYU L, MEDO M, YEUNG C, et al. Recommender systems [ J]. Physics Reports, 2012, 519(1): 1-50. 被引量:1
  • 2维基百科.小世界网络[EB/OLl.[2014-07-27].http://zh.wikipedia.org/wi-ki/小世界网络. 被引量:1
  • 3ANDERSON C. The long tail: why the future of business is selling less of more [ J]. Journal of Product Innovation Management, 2007, 24(3) : 274 -281. 被引量:1
  • 4RIBEIRO M T, LACERDA A, VELOSO A, et al. Pareto-efficient hybridization for multi-objective recommender systems [ C]// Pro- ceedings of the Sixth ACM Conference on Recommender Systems. New York: ACM, 2012: 19-26. 被引量:1
  • 5RIBEIRO M T, LACERDA A, de MOURA E S, et al. Multi-objec- tive Pareto-efficient approaches for recommender systems [ J]. ACM Transactions on Intelligent Systems and Technology, 2013, 9(1) : 1 --20,. 被引量:1
  • 6XIA X, WANG X, LI J, et al. Multi-objective mobile APP recom- mendation: a system-level collaboration approach [ J]. Computers and Electrical Engineering, 2014, 40(1): 203 -215. 被引量:1
  • 7HERLOCKER J L, KONSTAN J A, TERVEEN L G, et al. Evalu- ating collaborative filtering recommender systems [ J]. ACM Trans- actions on Information Systems, 2004, 22(1): 5 -53. 被引量:1
  • 8McNEE S M, RIEDL J, KONSTAN J A. Being accurate is not e- nough: how accuracy metrics have hurt recommender systems [ C]// CHT'06: Proceedings of the 2006 Conference on Human Factors in Computing Systems. New York: ACM, 2006:1097-1101. 被引量:1
  • 9DAVIS J, GOADRICH M. The relationship between precision-re- call and ROC curves [ C]//ICML'06: Proceedings of the 23rd In- ternational Conference on Machine Learning. New York: ACM, 2006:233-240. 被引量:1
  • 10ZHOU T, SU R, LIU R, et al. Accurate and diverse recommenda- tions via eliminating redundant correlations [ J]. New Journal of Physics, 2009, 11(12): 123008. 被引量:1

共引文献9

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部