期刊文献+

Effect of hydrogen addition on compression deformation behaviour of Ti-0.3Mo-0.8Ni alloy argon-arc welded joints 被引量:1

原文传递
导出
摘要 The effect of hydrogen addition on compression deformation behaviour of Ti-0.3Mo-0.8Ni alloy argon-arc welded joint has been investigated.Evolution mechanism of hydrogen-induced flow stress was discussed in detail.The results show that with increasing hydrogen content,the stretching and bending extent of fully lamellar microstructures including ot lamellas and acicular hydride continued to increase,the morphology of dynamic recrystallization(DRX)grains tended to change from approximately equiaxed to large lamellar shape,and the quantity of DRX grains and recrystallization degree of grains increased obviously.A large number of dislocations concentrated in the vicinity of the hydride.Steady stress was decreased continuously with increasing hydrogen content,while peak stress of the hydrogenated 0.12 wt.% H weld zone was decreased to the minimum value and then increased slowly.A slight decrease in flow stress of the hydrogenated 0.05 wt.% H weld zone was caused by limited increase in the volume fraction of softer βphase.Hydrogen-induced DRX of a phase and improved dislocation movement by strong interaction between the hydride and dislocation directly resulted in a sharp drop in flow stress of the hydrogenated 0.12 and 0.21 wt.% H weld zone.Solute hydrogen also finitely contributed to a sharp drop in flow stress of the hydrogenated 0.12 and 0.21 wt.% H weld zone by promoted local softening,which induced continuous DRX and more movable dislocations to participate in slipping or climbing.The reinforcement effect and plastic deformation of the hydride and solution strengthening of P phase induced by solute hydrogen finally led to the increase in flow stress of the hydrogenated 0.21 wt.% H weld zone in its true strain range from 0 to 0.36.
出处 《Journal of Iron and Steel Research International》 SCIE EI CSCD 2021年第5期621-628,共8页
基金 The authors would like to gratefully acknowledge that this work was supported by the China Postdoctoral Science Foundation(Grant No.2020M672306) National Natural Science Foundation of China(Grant Nos.51874225 and 51671152).
  • 相关文献

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部