期刊文献+

考虑垂直因子的粘弹性材料分数阶时温等效模型 被引量:4

FRACTIONAL TIME-TEMPERATURE SUPERPOSITION MODEL OF VISCOELASTIC MATERIAL WITH VERTICAL SHIFT FACTOR
下载PDF
导出
摘要 粘弹性材料动态力学性能具有显著的温频效应。为了更精准地表征粘弹性材料的动态力学性能,基于分数阶本构模型和温频等效原理,提出了考虑垂直因子的分数阶时温等效模型(VFTTS)。以某工程减振用粘弹性材料为对象,开展了DMA实验,对其变温(-75℃~65℃)变频(0.5 Hz、1 Hz、2 Hz、3.3 Hz、5 Hz和10 Hz)动态力学性能(储能模量、耗能模量和损耗因子)进行分析;同时,利用VFTTS模型和FTTS模型(仅考虑水平因子)对不同温度下的储能模量频率谱进行移动,得到了参考温度为5℃时的主曲线;用分数阶标准线性固体模型(CFSLS)对时温等效模型进行验证。结果表明:在实验温度内,VFTTS模型和FTTS模型的频率预测范围相同,实现了粘弹性材料动态力学性能在1.086×10^(-8)Hz~1.240×10^(11)Hz的超高频预测,且相对误差分别为6.07%和13.22%,表明VFTTS模型不仅具有广泛的预测能力,而且预测精度更高。 The dynamic properties of the viscoelastic material have remarkable temperature-frequency effect. In order to characterize the dynamic properties of the viscoelastic material more precision,on the basis of the fractional constitutive model and the time-temperature superposition principle,the fractional time-temperature superposition model of the viscoelastic material with vertical factor( VFTTS) was proposed. The DMA test was conducted on the viscoelastic material used in vibration control of engineering vehicle. The dynamic behaviors( storage modulus,loss modulus and loss factor) under variable temperatures(-75℃ ~ 65℃) and frequencies( 0. 5 Hz,1 Hz,2 Hz,3. 3 Hz,5 Hz and 10 Hz) were analyzed. Meanwhile,the master curves of the storage modulus at the reference temperature 5℃ are obtained by the VFTTS model and the FTTS model( only with horizon factor). The fractional standard linear solid model( CFSLS) was used to validate the accuracy of the above two models. The results show that the prediction ranges of the frequencies of VFTTS model and FTTS model are the same. The superhigh frequency predictions between 1. 086 × 10^(-8) Hz and 1. 240 × 10^(11) Hz are realized. The relative errors of the two models are 6. 07% and 13. 22%. In summary,the VFTTS model has broad prediction ability and higher accuracy.
作者 王瑶 孙大刚 李占龙 秦园 任国祥 WANG Yao;SUN DaGang;LI ZhanLong;QIN Yuan;REN GuoXiang(Taiyuan University of Science and Technology,School of Mechanical Engineering,Taiyuan 030024,China)
出处 《机械强度》 CAS CSCD 北大核心 2021年第3期707-711,共5页 Journal of Mechanical Strength
基金 国家自然科学基金项目(51805347) 中国博士后科学基金项目(2019M661058)资助。
关键词 粘弹性 分数阶 时温等效 垂直因子 主曲线 Viscoelasticity Fractional order Time-temperature superposition Vertical factor Master curve
  • 相关文献

参考文献5

二级参考文献27

  • 1范仰才,李景德,符德胜.广义导纳圆[J].中山大学学报(自然科学版),1995,34(3):34-35. 被引量:2
  • 2Ya P, Hartono S. Modeling of nonlinear elastomeric mounts. Part 1:Dynamic testing and parameter identification [J]. SAE Technical Paper Serials 2001-01-0042, 2001. 被引量:1
  • 3Park S W. Analytical modeling of viscoelastic dampers for structural and vibration control [J]. Solids and Structures, 2001, 38: 8065--8092. 被引量:1
  • 4Dzierzek S. Experiment-based modeling of cylindrical rubber bushings for the simulation of wheel suspension dynamic behavior [J]. SAE Technical Paper Serials 2000-01-0095, 2000. 被引量:1
  • 5Sjoberg M. Non-linear behavior of a rubber isolator system using fractional derivatives [J]. Vehicle System Dynamics, 2002, 37(3): 217--236. 被引量:1
  • 6Pritz T. Five-parameter fractional derivative model for polymeric damping materials [J]. Journal of Sound and Vibration, 2003, 265: 935--952. 被引量:1
  • 7Pritz T. Analysis of four-parameters fractional derivative model of real solid materials [J]. Journal of Sound and Vibration, 1996, 195(1): 103--115. 被引量:1
  • 8Schmidt A, Gaul L. Finite element formulation of viscoelastic constitutive equations using fractional time derivatives [J]. Nonlinear Dynamics, 2002, 29: 37--55. 被引量:1
  • 9Bagley R L, Torvik P J. Fractional calculus-a different approach to the analysis of viscoelastically damped structures [J]. AIAA Journal, 1983, 21(5): 741--748. 被引量:1
  • 10Bagley R L, Torvik P J. Fractional calculus in the transient analysis of viscoelastically damped structures [J]. AIAA Journal, 1985, 23(6): 918--925. 被引量:1

共引文献44

同被引文献29

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部