期刊文献+

人工智能辅助低年资放射科医师检出乳腺病变 被引量:1

Artificial intelligence assisted junior radiologists in detecting breast lesions on mammography
下载PDF
导出
摘要 目的观察人工智能(AI)辅助对低年资放射科医师检出乳腺X线片中乳腺病灶的价值。方法回顾性分析73例接受乳腺X线摄影检查的女性患者。由3名低年资放射科医师首先分别阅片,之后于AI辅助下再次阅片,勾画乳腺病灶区域;统计检出病灶数,记录病灶类型及乳腺影像报告和数据系统(BI-RADS)分类。以病理结果或随访最终临床诊断为标准,对比医师单独阅片与AI辅助阅片检出乳腺病灶的敏感度和准确率及对不同类型、不同BI-RADS分类病灶的诊断效能。结果73例共121个乳腺病灶,其中软组织病灶(包括肿块、结构扭曲与不对称病灶)88个、钙化病灶33个;BI-RADS 2类17个,3类66个,4类及以上38个。与医师单独阅片相比,AI辅助阅片对全部乳腺病灶、特别是软组织病灶的诊断敏感度和准确率均显著提升(P均<0.01),而对乳腺钙化病灶的敏感度和准确率差异均无统计学意义(P均>0.05)。结论AI辅助有助于提高低年资放射科医师检出乳腺X线片中乳腺病灶、尤其软组织病灶的效能。 Objective To observe the application value of artificial intelligence(AI)for junior radiologists in detecting breast lesions on mammography.Methods Seventy-three women who underwent mammography were retrospectively analyzed.The mammographic images reviewed were interpreted by junior radiologists,respectively.Then the second reviews were performed with the assistance of AI,and the breast lesion areas were delineated,respectively,the numbers of detected lesions were counted,and the types of lesions and the classifications of breast imaging report and data system(BI-RADS)were evaluated.Taken pathological results or the final clinical diagnosis after following-up as the standards,the sensitivity and accuracy of detecting breast lesions,as well as the diagnostic efficacies of lesions with different types and different BI-RADS grades were compared between junior radiologists alone and with the assistance of AI.Results A total of 121 lesions were identified in 73 patients,including 88 of tissue lesions(mass,structural distortion or asymmetry)and 33 calcifications.According to BI-RADS classification system,there were 17 grade 2 lesions,66 grade 3 lesions and 38 grade 4 and above lesions.Compared with junior radiologists alone,AI-assistant interpretation significantly improved the overall diagnostic sensitivity and accuracy of all 121 breast lesions,especially of soft tissue lesions(all P<0.01),while there was no statistical significance of sensitivity nor accuracy of diagnosing breast calcifications with or without AI assistance(all P>0.05).Conclusion AI assistance could improve the efficiency of junior radiologists for detecting breast lesions on mammography,especially of soft tissue lesions.
作者 周晨怡 朱芳莲 王艳玲 颜任泽 袁潇 徐乾山 ZHOU Chenyi;ZHU Fanglian;WANG Yanling;YAN Renze;YUAN Xiao;XU Qianshan(Department of Radiology, the People's Hospital of Suzhou New District, Suzhou 215129, China)
出处 《中国介入影像与治疗学》 北大核心 2021年第6期345-349,共5页 Chinese Journal of Interventional Imaging and Therapy
基金 江苏省妇幼保健协会科研项目(FYX202020) 苏州高新区医疗卫生科技计划项目(2016Z008)。
关键词 乳腺肿瘤 乳房X线摄影术 人工智能 breast neoplasms mammography artificial intelligence
  • 相关文献

参考文献5

二级参考文献27

  • 1石平,雷增杰,蓝宗富,朱世杰.如何快速有效地获取网上病理学图像资源[J].西北医学教育,2007,15(2):219-221. 被引量:4
  • 2全国肿瘤防治研究办公室.中国恶性肿瘤死亡调查研究(1990-1992)[M].北京:人民卫生出版社,2008.82-101. 被引量:13
  • 3Torre LA,Bray F,Siegel RL,et al.Global cancer statistics,2012[J].CA Cancer J Clin,2015,65(2):87-108. 被引量:1
  • 4De Santis C,Ma J,Bryan L,et al.Breast cancer statistics,2013[J].CA Cancer J Clin,2014,64(1):52-62. 被引量:1
  • 5De Santis C,Siegel R,Bandi P,et al.Breast cancer statistics,2011[J].CA Cancer J Clin,2011,61(6):409-418. 被引量:1
  • 6Mettlin C.Global breast cancer mortality statistics[J].CA Cancer J Clin,1999,49(3):138-144. 被引量:1
  • 7Zeng H,Zheng R,Guo Y,et al.Cancer survival in China,2003-2005:a population-based study[J].Int J Cancer,2015,136(8):1921-1930. 被引量:1
  • 8Zeng H,Zheng R,Zhang S,et al.Female breast cancer statistics of 2010 in China:estimates based on data from 145 populationbased cancer registries[J].J Thorac Dis,2014,6(5):466-470. 被引量:1
  • 9Allemani C,Sant M,Weir HK,et al.Breast cancer survival in the US and Europe:a CONCORD high-resolution study[J].Int J Cancer,2013,132(5):1170-1181. 被引量:1
  • 10Walters S,Maringe C,Butler J,et al.Breast cancer survival and stage at diagnosis in Australia,Canada,Denmark,Norway,Sweden and the UK,2000-2007:a population-based study[J].Br J Cancer,2013,108(5):1195-1208. 被引量:1

共引文献2109

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部