期刊文献+

Machine learning-assisted systematical polymerization planning:case studies on reversible-deactivation radical polymerization 被引量:2

原文传递
导出
摘要 The combined influence of chemical composition,molecular weight(MW)and molecular weight distribution(D)on the functions and performances of polymeric materials necessitates simultaneous satisfaction of multidimensional requirements during polymer synthesis.However,the complexity of polymerization reactions often dissuades chemists when precisely accessing diversified polymer targets.Herein,we developed a machine learning(ML)-assisted systematical polymerization planning(SPP)platform for addressing this challenge.With ML model providing integrated navigation of the reaction space,this approach can conduct multivariate analysis to uncover complex interactions between the polymerization result and conditions,prescribing optimal reaction conditions to achieve discretionary polymer targets concerning three dimensions including chemical composition,MWandD values.Given the increasing importance of polymerization in advanced material engineering,this ML-assisted SPP platform provides a universal strategy to access tailored polymers with on-demand prediction of polymerization parameters.
出处 《Science China Chemistry》 SCIE EI CSCD 2021年第6期1039-1046,共8页 中国科学(化学英文版)
基金 This work was supported by the National Natural Science Foundation of China(21971044,21704016) Fudan University and State Key Laboratory of Molecular Engineering of Polymers。
  • 相关文献

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部