期刊文献+

基于ρ-支配轮廓及n-of-Nρ-支配轮廓的数据流中关键数据计算方法 被引量:2

A Calculation Method for Key Data of Data Stream Based on ρ-dominant and n-of-Nρ-dominant Skylines
下载PDF
导出
摘要 目前数据采集手段不断丰富和发展,但是数据采集区域往往网络状况受限,比如网络时断时续、网络带宽较小,采集的数据难以实时准确的传输到数据应用方,因此如何计算出采集数据中关键数据减少数据传输过程中网络占用量至关重要。以装甲车辆的状态数据传输为背景,重新对数据流中ρ-支配关系的性质进行分析,并对数据流中ρ-支配轮廓查询算法进行更改和扩展;在此基础上,提出了数据流中n-of-Nρ-支配轮廓查询算法,进一步满足网络受限环境中关键数据选择传输的要求。仿真实验结果表明,改进的数据流中ρ-支配轮廓查询算法以及数据流中n-of-Nρ-支配轮廓查询算法能够计算出相对关键的数据,进而减小数据传输的网络代价,并且数据流中n-of-Nρ-支配轮廓查询相比于数据流中ρ-支配轮廓查询具有更广泛的应用。 The data collection method has constantly been enriched and developed,but the network in the data collection area is often limited,such as intermittent network and small network bandwidth,so the collected data is difficult to be accurately transmitted to the application side in real time.It is very important to ensure how to calculate the key data to reduce the network usage during data transmission.Based on the state data transmission of armored vehicles,the nature of theρ-dominant relationship in the data stream is reanalyzed,and the query algorithm ofρ-dominant skyline in the data stream is changed and expanded.On this basis,a query algorithm of n-of-Nρ-dominant skyline in the data stream is proposed to further meet the requirements of the selection and transmission of key data in the network-restricted environment.Through the experiment,it is found that the improvedρ-dominant skyline query algorithm and the n-of-Nρ-dominant skyline query algorithm can calculate the relatively critical data,thereby reducing the network cost of data transmission,and n-of-Nρ-dominant skyline query has wider application thanρ-dominant skyline query in the data stream.
作者 霸建民 郭永红 彭龙 赵东阳 邵鹏志 杜宏博 BA Jianmin;GUO Yonghong;PENG Long;ZHAO Dongyang;SHAO Pengzhi;DU Hongbo(Institue of Computer Application Technology, China North Industries Group Corporation Limited, Beijing 100089, China)
出处 《兵工学报》 EI CAS CSCD 北大核心 2021年第5期1004-1015,共12页 Acta Armamentarii
基金 国家重点研发计划项目(2017YFC0822000)。
关键词 数据流 轮廓查询 ρ-支配轮廓 n-of-Nρ-支配轮廓 数据传输 data stream skyline query ρ-dominant skyline n-of-Nρ-dominant skyline data transmission
  • 相关文献

参考文献7

二级参考文献58

  • 1周红福,宫学庆,郑凯,周傲英.基于高维空间的在线高效子空间Skyline算法——CSky[J].计算机学报,2007,30(8):1409-1417. 被引量:8
  • 2Cui Bin, Lu Hua, Xu Quanqing, et al. Parallel distributed processing of constrained skyline queries by filtering[C] // Proc of the 24th Int Conf on Data Engineering. Los Alamitos, CA: IEEE Computer Society, 2008:546-555. 被引量:1
  • 3Borzsonyi S, Kossmann D, Stocker K. The skyline operator [C]//Proc of the 17th Int Conf on Data Engineering. Los Alamitos, CA: IEEE Computer Society, 2001:421-430. 被引量:1
  • 4Barndorff-Nielsen O, Sobel M. On the distribution of the number of admissible points in a vector random sample [J]. Theory of Probability and Its Application, 1966, 11 (2) : 249-269. 被引量:1
  • 5Dellis E, Seeger B. Efficient computation of reverse skyline queries [C]//Proc of the 33rd Int Conf on Very Large Data Bases. New York: ACM, 2007:291-302. 被引量:1
  • 6Papadias D, Tao Yufei, Fu Greg, et al. Progressive skyline computation in database systems [J]. ACM Trans on Database Systems, 2005, 30(1):41-82. 被引量:1
  • 7Bentley J L, Kung H T, Schkolnick M, et al. On the average number of maxima in a set of vectors and applications [J]. JournaloftheACM, 1978, 25(4):536-543. 被引量:1
  • 8Klan-Lee T, Pin-Kwang E, Ooi B C. Efficient progressive skyline computation [C]//Proc of the 27th Int Conf on Very Large Data Bases. San Francisco: Morgan Kaufmann, 2001: 301-310. 被引量:1
  • 9Kossmann D, Ramsak F, Rost S. Shooting stars in the sky: An online algorithm for skyline queries [C]//Proc of the 28th Int Conf on Very Large Data Bases. San Francisco: Morgan Kaufmann, 2002: 275-286. 被引量:1
  • 10Doulkeridis C, Kotidis Y, subspaee skyline computation et al. SKYPEER: efficient over distributed data [C] // Proc of 23th Int Conf on Data Engineering. Los Alamitos CA: IEEE Computer Society, 2007:416-425. 被引量:1

共引文献60

同被引文献32

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部