期刊文献+

压装车轴镶入部裂纹缺陷信息提取

Information Extraction of Crack Defect in Insertion Part of Press-Fit Axle
下载PDF
导出
摘要 针对轨道车辆压装车轴镶入部在定期超声波检测时噪声信号幅值较大、缺陷信号被淹没在噪声信号中无法直接识别的状况,基于超声波检测信号采集数据分析信号典型特征,结果表明有较高辨识度的缺陷信号具有能量集中、信噪比高且快速收敛的特性。采用小包波变换对采集的压装后的车轴镶入部超声波检测信号进行分解,提取区别于噪声信息的缺陷特征系数和缺陷幅值系数,以此重建信号波形;再采用基于logistic函数的自寻优阈值滤波改进算法提高缺陷信号信噪比,以检测淹没在噪声信号中的缺陷信号,并基于神经网络进行验证。结果表明:基于缺陷特征系数和缺陷幅值系数的重建信号波形,可以准确区分超声波检测数据中噪声信号和含有疲劳裂纹的缺陷信号,对于缺陷深度大于0.5 mm的裂纹缺陷,识别准确率为100%。 In view of the situation that the amplitude of noise signal is large and the defect signals are submerged in the noise signals and cannot be directly identified during the regular ultrasonic detection for the insertion part of the press-fit axle of track vehicle,the typical characteristics of the signal are analyzed based on the acquired data from the ultrasonic detection.Analysis results show that the defect signals with high recognition degrees have the characteristics of concentrated energy,high signal-to-noise ratio and fast convergence.The wavelet packet transformation is used to decompose the signals collected from the ultrasonic detection for the insertion part of the press-fit axle.The defect characteristic coefficients and defect amplitude coefficients,which are different from the noise information,are extracted to reconstruct the signal waveform.Then,an improved selfoptimizing threshold filter algorithm based on logistic function is used to improve the signal-to-noise ratio of reconstructed signals so that the submerged defect signals can be distinguish from noise signals,and is verified by neural network.Results show that the reconstructed signal waveform based on the defect characteristic coefficient and the defect amplitude coefficient can accurately distinguish the noise signals and the defect signals containing fatigue cracks in the ultrasonic detection data.For the crack defects with the depth greater than 0.5 mm,the identification accuracy is 100%.
作者 武冬冬 杨凯 彭朝勇 WU Dongdong;YANG Kai;PENG Chaoyong(Research and Develop Center,Chengdu Leading Software Technology Co.,Ltd.,Chengdu Sichuan 610091,China;School of Physical Science and Technology,Southwest Jiaotong University,Chengdu Sichuan 610031,China)
出处 《中国铁道科学》 EI CAS CSCD 北大核心 2021年第3期121-126,共6页 China Railway Science
基金 国家自然科学基金资助项目(61501381)。
关键词 无损检测 信息提取 压装车轴 裂纹缺陷 超声波 神经网络 Nondestructive test Information extraction Press-fit axle Crack defect Ultrasonic Neural network
  • 相关文献

参考文献6

二级参考文献39

  • 1叶宗裕.皮尔曲线模型的推广及其应用[J].数学的实践与认识,2004,34(7):72-76. 被引量:8
  • 2王书方.关于自然信息的哲学思考[J].中南大学学报(社会科学版),2007,13(3):258-261. 被引量:6
  • 3崔启武 Lawson G.一个新的种群增长数学模型-对经典Logistic方程和指数方程扩充.生态学报,1982,2(4):403-415. 被引量:1
  • 4http://www. fl. gov. cn/xwlr.asp?mlm=5&mxh=2635 被引量:1
  • 5Melander A. A finite element study of short cracks with different inclusion types under rolling contact fatigue load[J]. Int J Fatigue, 1997, 19(1): 13-24. 被引量:1
  • 6Boselli J, Pitcher P D. Numerical modeling of particle distribution effects on fatigue in AI-SiCp composite[J]. Materials Science and Engineering A, 2001, 300: 113-124. 被引量:1
  • 7Meyer S, Bruckner-Foit A, Moslang A. A stochastic simulation model for microcrack initiation in a martensitic steel[J]. Computational Materials Science, 2003, 26:102-110. 被引量:1
  • 8李航月,孙海林,陶忠明,胡奈赛,何家文.1420铝锂合金的疲劳裂纹扩展和自抑制[J].西安交通大学学报,1997,31(3):103-107. 被引量:3
  • 9Guido Buresti, Giovanni Lombardi, J acopo Bellazzini. On the analysis of fluctuating velocity signals through methods based on the wavelet and Hilbert transforms[J]. Chaos, Solitons and Fractals, 2004, 20 (4)~ 149 -158. 被引量:1
  • 10GregorioAndria, FilippoAttivissimo, NicolaGiaquinto. Digital signal processing techniques for accurate ultrasonic sensor measurement [J]. Measurement, 2001(30)~105 -114. 被引量:1

共引文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部