期刊文献+

托卡马克无碰撞捕获电子模在时空表象中的群速度

Group velocity in spatiotemporal representation of collisionless trapped electron mode in tokamak
下载PDF
导出
摘要 按照章等[Zhang Y Z, Liu Z Y, Mahajan S M, Xie T, Liu J 2017 Phys. Plasmas 24 122304]发展的漂移波-带状流理论,将多重尺度导数展开法应用到电子漂移动理学方程,零级为描述微观尺度捕获电子模的线性本征模方程,一级为介观尺度受带状流调制的捕获电子模的包络方程.其中线性本征模方程已经在谢等[Xie T, Zhang Y Z, Mahajan S M, Wu F, He Hongda, Liu Z Y 2019 Phys. Plasmas 26 022503]的研究中被求解,利用该文得到的捕获电子模的本征值和二维模式结构计算包络方程中的群速度.径向群速度由托卡马克磁场的测地曲率贡献,极向群速度来自逆磁漂移速度和法向曲率,它们仅是极向角的函数,后者给出极向角到时间的映射.径向群速度作为时间的函数,其周期在毫秒量级,具有快速过零的特征.这为研究捕获电子模驱动带状流提供了充实的理论基础. The multiple scale derivative expansion method is used to manipulate the electron drift kinetic equation,following the theoretical framework of drift wave–zonal flow system developed by Zhang et al.[Zhang Y Z,Liu Z Y,Mahajan S M,Xie T,Liu J 2017 Phys.Plasmas 24122304].At the zeroth order it is the linear eigenmode equation describing the trapped electron mode on a mirco-scale.At the first order it is the envelop equation for trapped electron mode modulated by the zonal flow on a meso-scale.The eigenmode equation has been solved by Xie et al.[Xie T,Zhang Y Z,Mahajan S M,Wu F,He Hongda,Liu Z Y 2019 Phys.Plasmas 26022503]to obtain the eigenvalue and two-dimensional mode structure of trapped electron mode.These are essential components in calculating group velocities contained in the envelop equation.The radial group velocity arises from the geodesic curvature of magnetic field in tokamak.The poloidal group velocity stems from the normal curvature and diamagnetic drift velocity,which yields the mapping between the poloidal angle and time.Since the radial group velocity is also a function of poloidal angle,it is mapped to a periodic function of time with a period of milliseconds.The numerical results indicate the rapid zero-crossing,which is significant in the drift wave–zonal flow system and provides a sound foundation for studying zonal flow driven by trapped electron mode.
作者 刘朝阳 章扬忠 谢涛 刘阿娣 周楚 Liu Zhao-Yang;Zhang Yang-Zhong;Xie Tao;Liu A-Di;Zhou Chu(School of Nuclear Science and Technology,University of Science and Technology of China,Hefei 230026,China;Center for Magnetic Fusion Theory,Chinese Academy of Sciences,Hefei 230031,China;Sichuan University of Science and Engineering,Zigong 643000,China)
出处 《物理学报》 SCIE EI CAS CSCD 北大核心 2021年第11期180-187,共8页 Acta Physica Sinica
基金 国家自然科学基金(批准号:U1967206,11975231,11805203,11775222) 国家磁约束聚变能源研发计划(批准号:2018YFE0311200,2017YFE0301204) 中国科学院前沿科学重点研究项目(批准号:QYZDB-SSW-SYS004)资助的课题。
关键词 托卡马克 捕获电子模 群速度 带状流 tokamak trapped electron mode group velocity zonal flow
  • 相关文献

参考文献1

二级参考文献9

  • 1Zhang Y Z, Mahajan S M. On broken ballooning symmetry [J]. Phys. Lett. A, 1991, 157: 133. 被引量:1
  • 2Connor J W, Hastie R J, Taylor J B. Shear, periodicity, and plasma ballooning modes [J]. Phys. Rev. Lett., 1978, 40: 396. 被引量:1
  • 3Lee Y C, Van Dam J W. Kinetic theory of ballooning instabilities [M]. in proceedings of the Finite Beta Theory Workshop, Varenna Summer School of Plasma Physics, September 1977, Varenna, Italy, edited by B. Coppi and B. Sadowski (U.S. Dept. of Energy, Office of Fusion Energy, Washington DC, 1979), CONF-7709167, 93. 被引量:1
  • 4Connor J W, Hastie R J, Taylor J B. High mode number stability of an axisymmetric toroidal plasma [J]. Proc. R. Soc. London Set. A, 1979, 365: 1. 被引量:1
  • 5Xie T, Zhang Z, Mahajan S M, et al. Ballooning theory of the second kind - two dimensional tokamak modes [Jl. Phys. Plasmas, 2012, 19: 072105. 被引量:1
  • 6Taylor J B, Connor J, Wilson H R. Structure and damping of toroidal drift waves (and their implications for anomalous transport) [J]. Plasma Phys. Contr. Fusion, 1993, 35: 1063. 被引量:1
  • 7Connor J, Taylor J B, Wilson H R. Shear damping of drift waves in toroidal plasmas, [J]. Phys. Rev. Lea., 1993, 70: 1803. 被引量:1
  • 8Brower D L, Peebles W A, Luhmann N C, et al. Multichannel scattering studies of the spectra and spatial distribution of tokamak microturbulence [J]. Phys. Rev. Lett., 1985, 54: 689. 被引量:1
  • 9Zhang Y Z, Mahajan S M, Zhang X D. Two dimensional aspects of toroidal drift waves in the ballooning representation [J]. Phys. Fluids, 1992, B4, 2729. 被引量:1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部