摘要
考虑一类非光滑半无限多目标优化问题.利用Clarke次微分和广义的Guignard约束规则,得到非光滑半无限多目标问题有效解的强KKT必要条件.进一步,在η-拟不变凸和(严格)η-伪不变凸条件下得到问题(弱)有效解的充分条件.
In this paper,we consider a class of nonsmooth semi-infinite multiobjective optimization problems.By using Clarke subdifferential and generalized Guignard constraint qualification(GGCQ),we establish strong Karush-Kuhn-Tucker(KKT) necessary conditions for efficient solutions of nonsmooth semi-infinite multiobjective optimization problems.Further,the sufficient conditions for(weak) efficient solutions are proved under conditions ofη-quasiinvexity and(strictly) η-pseudoinvexity.
作者
王海军
张秀利
WANG Hai-jun;ZHANG Xiu-li(Department of Mathematical,Taiyuan Normal University,Jinzhong 030619,China)
出处
《数学的实践与认识》
2021年第9期171-176,共6页
Mathematics in Practice and Theory
基金
山西省高等学校科技创新项目(2019L0784)
山西省回国留学人员科研资助项目(2017-164)。
关键词
多目标半无限优化
Clarke次微分
有效解
强KKT条件
semi-infinite multiobjective optimization
clarke subdifferential
efficient solution
strong KKT condition