摘要
目的:探讨微小RNA(microRNA,miRNA,miR)-16在冠状动脉粥样斑块发展中的作用及该过程中涉及的可能的作用机制。方法:收集16例行冠状动脉旁路移植术的冠心病患者,于术中获得冠状动脉斑块组织,根据病理学检查将冠状动脉斑块分为纤维斑块组和粥样斑块组。采用miRNAs微阵列芯片(mi RNAs array)检测miR-16在冠状动脉纤维斑块和粥样斑块组织中的表达情况。构建体外氧化型低密度脂蛋白(oxidized low density lipoprotein,oxLDL)诱导巨噬细胞向泡沫细胞转化的模型,采用TUNEL检测、细胞计数和蛋白质印迹法来观察泡沫细胞的转化和凋亡情况;采用酶联免疫吸附试验检测泡沫细胞上清液中炎症因子[白细胞介素(interleukin, IL)-6、IL-8、单核细胞趋化蛋白1(monocyte chemoattractant protein1, MCP-1)和基质金属蛋白酶9(matrix metalloproteinase 9, MMP-9)]的释放,用miRNAs array检测miR-16水平;最后将miR-16转染巨噬细胞,再检测泡沫细胞的凋亡情况及炎症因子释放的变化。结果:经miRNAs array检测发现,与冠状动脉纤维斑块相比,冠状动脉粥样斑块组中的miR-16表达升高1.75倍。oxLDL诱导泡沫细胞的体外模型显示,oxLDL可促进巨噬细胞向泡沫细胞转变,并诱导其凋亡,促进释放大量炎症因子(如IL-6、IL-8、MCP-1和MMP-9)。将miR-16转染至巨噬细胞后发现,泡沫细胞凋亡和炎症因子分泌增加(IL-6、IL-8、MCP-1和MMP-9)。结论:oxLDL可诱导泡沫细胞凋亡、炎症因子释放和mi R-16高表达,而高表达的miR-16可进一步加剧泡沫细胞的凋亡和炎症反应,促进动脉粥样硬化的进展,miR-16可能是抑制冠状动脉斑块进展的靶点。
Objective: To explore the role of microRNA(miRNA, mi R)-16 in the development of coronary atheromatous plaques and to study possible mechanism involved in the process. Methods: Coronary artery tissues were obtained from 16 patients undergoing coronary artery bypass grafting,and the coronary artery plaques were divided into fibrous plaques and atheromatous plaques based on pathological examination. The expression level of mi R-16 in coronary fibrous plaques and atheromatous plaques was detected by miRNAs array. The in vitro model of oxidized low density lipoprotein(oxLDL)-induced foam cells from macrophages was established, the transformation as well as apoptosis of foam cells were detected by TUNEL assay, cell counting and Western blotting. The release of inflammatory cytokines [interleukin(IL)-6,IL-8, monocyte chemoattractant protein(MCP)-1 and matrix metalloproteinase(MMP)-9] in the culture supernatant of form cell was tested by enzyme-linked immunosorbent assay(ELISA), and expression of mi R-16 was tested by miRNAs array.Finally, miR-16 was transfected into macrophages and the apoptosis of foam cell as well as the release of inflammatory factors were detected. Results: Compared with fibrous plaques of coronary artery, the expression of miR-16 in coronary atheromatous plaques detected by miRNAs assay increased by 1.75 folds. In vitro model of oxLDL-induced foam cells showed that oxLDL might promote the transfer of macrophages into foam cells and induce foam cells apoptosis and stimu-late the release of inflammatory factors(such as IL-6, IL-8, MCP-1 and MMP-9). Macrophages transfected with miR-16 could further induce the apoptosis of foam cells and secretion of inflammatory factors. Conclusions: oxLDL could induce the apoptosis of foam cells, release of inflammatory factors and up-regulate miR-16 expression, and the high expression of miR-16 could further enhance foam cell apoptosis and inflammatory response, further promote the progression of atherosclerosis. miR-16 might serve as a potential target for inhibit
作者
查晴
于晨溪
刘亚
杨玲
叶佳雯
刘艳
ZHA Qing;YU Chenxi;LIU Ya;YANG Ling;YE Jiawen;LIU Yan(Department of Cardiology,Shanghai Ninth People's Hospital,Shanghai Jiao Tong Universily School of Medicine,Shanghai 20001,China;Department of Cardiology,Rujing Hospital,Shanghai Jiao Tong Universiry School of Medicine,Shanghai 200025.China)
出处
《诊断学理论与实践》
2021年第1期82-87,共6页
Journal of Diagnostics Concepts & Practice
基金
上海交通大学医学院附属第九人民医院基础研究助推计划资助(JYZZ100)。