摘要
制冷剂分配不均现象是室外换热器研究的重点内容。本文设计了两种隔板形式,共制作7种样件放置于换热器集管中进行实验研究。通过实验分析了换热器用作蒸发器的6种工况与用作冷凝器的4种工况下的制冷剂分配情况及换热性能。结果表明:本文利用挡流板实现了良好的制冷剂分配效果,两种挡流隔板(A和B)的加入均有助于改善换热器制冷剂分配不均并提升了换热性能,且隔板形式、数量以及换热器进出口位置对于换热器性能均有影响;换热器用作蒸发器时,隔板数量的增加最多提升了隔板A 15.28%、隔板B 10.87%的制冷量,最多降低了隔板A 26.07%、隔板B 58.82%的压降,进出口位置的上升最多降低了隔板A 55.56%的压降,提高了隔板B 12.81%的制冷量,进口位置的下移最多降低了隔板A 55.56%、隔板B 130%的压降,提高了隔板A 13.42%、隔板B 4.84%的制冷量;用作冷凝器时,进出口位置的上升最多降低了隔板A 16.67%、隔板B 27.03%的压降,提高了隔板A 4.72%、隔板B 3.9%的制冷量。
The uneven distribution of refrigerants is a key issue in outdoor heat exchanger research.In this study,two types of baffles were designed,and a total of seven samples were prepared and placed in the heat exchanger header for experimental research.Through experiments,the refrigerant distribution and heat transfer performance of the six working conditions of the heat exchanger as an evaporator and the four working conditions of the condenser were analyzed.The results show that using baffles achieves a good refrigerant distribution effect,and the addition of two baffles(A and B)can help improve the uneven distribution of the refrigerant in the heat exchanger and improve the heat transfer performance.In addition,the type and number of baffles and the position of the inlet and outlet of the heat exchanger have an impact on the heat transfer performance.When the heat exchanger is used as an evaporator,the increase in the number of baffles increases the refrigerant capacity of baffle A by 15.28%and baffle B by 10.87%,reducing the pressure drop of baffle A by 26.07%and baffle B by 58.82%.The rise in the inlet and outlet positions reduces the pressure drop of baffle A by 55.56%and increases the refrigerant capacity by 12.81%.The downward movement reduces the pressure drop of baffle A by 55.56%and baffle B by 130%and increases the refrigerant capacity of baffle A by 13.42%and baffle B by 4.84%.When used as a condenser,the increase in the inlet and outlet positions reduces the pressure drop of baffle A by 16.67%and baffle B by 27.03%and increases the refrigerant capacity of baffle A by 4.72%and baffle B by 3.9%.
作者
陈含冰
李万勇
陈超华
陈涛
施骏业
刘雨声
陈江平
Chen Hanbing;Li Wanyong;Chen Chaohua;Chen Tao;Shi Junye;Liu Yusheng;Chen Jiangping(Institute of Refrigeration and Cryogenics,Shanghai Jiao Tong University,Shanghai,200240,China;Jiangsu Z-Park Energy Saving and Environmental Protection Research Co.,Ltd.,Changzhou,213399,China)
出处
《制冷学报》
CAS
CSCD
北大核心
2021年第3期77-86,共10页
Journal of Refrigeration
关键词
汽车空调
热泵
室外换热器
制冷剂分配
automobile air-conditioning
heat pump
outdoor heat exchanger
refrigerant distribution