期刊文献+

基于CEEMDAN-SVM的高铁轴承故障诊断研究 被引量:4

Research on Bearing Fault Diagnosis of High-speed Railway Based on CEEMDAN-SVM
下载PDF
导出
摘要 高铁轴承在高铁运行中起着重要作用,对其进行状态检测和故障诊断有着十分重要的作用和意义。总结出一种基于自适应辅助噪声的完备集合经验模态分解(CEEMDAN)和样本熵(SampEn)相结合的高铁轴承故障诊断方法。振动信号经过分解获得诸多的本征模态分量(IMF),计算其样本熵特征参数来表征不同故障状态下的轴承信号的相关特征,并构造相应的训练和测试样本数据,而后将样本数据录入支持向量机(SVM)并配合灰狼优化算法(GWO)进行训练和测试,完成轴承故障的分类和识别。实验结果表明,此方法能够有效区分不同故障状态下的轴承振动信号。 High speed rail bearing plays an important part in the operation of high-speed railway,so it is very important to carry out state detection and fault diagnosis.In this paper,a bearing fault diagnosis method based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)and Sample Entropy(SampEn)has been proposed.The vibration signal is decomposed into many intrinsic mode functions(IMF),the Sample Entropy parameters are calculated to represent the relevant characteristics of different signals,and the corresponding train and test data samples are constructed.After that,the data samples are input into support vector machine(SVM)and trained and tested with gray wolf optimization algorithm(GWO)to complete the classification and identification of bearing faults.The results show that this method can effectively distinguish the bearing vibration signals under different fault states.
作者 杨帅 郝如江 Yang Shuai;Hao Rujiang(School of Mechanical Engineering,Shijiazhuang Tiedao University,Shijiazhuang 050043,China)
出处 《石家庄铁道大学学报(自然科学版)》 2021年第2期116-122,共7页 Journal of Shijiazhuang Tiedao University(Natural Science Edition)
  • 相关文献

参考文献11

二级参考文献89

共引文献123

同被引文献91

引证文献4

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部