期刊文献+

具有活体检测功能的手背静脉身份识别方法研究 被引量:7

Recognition Method of Dorsal Hand Vein with Liveness Detection Function
原文传递
导出
摘要 针对身份识别容易被仿冒和造假的问题,提出了一种利用近红外相机捕获手背静脉同时具有活体检测功能的身份识别方法,手背静脉图像提供静脉特征作为身份识别的依据,与此同时获取的脉搏波的周期性特征作为活体检测的标志。利用自行搭建的手背静脉和脉搏波捕获实验装置,研究了70个个体的手背静脉图像以及活体和假体的静脉图像特征,并提出了提高身份识别准确率的算法。采用主成分分析对活体静脉特征向量进行降维,降低分类算法的复杂度,结合马氏距离去除异常样本,以提高识别精度,再采用参数优化的随机森林算法和支持向量机算法实现了手背静脉的精准识别。结果表明:基于手背静脉特征结合随机森林算法和支持向量机算法可以对不同个体进行身份识别,识别准确率分别为99.28%和99.86%,识别时间分别为0.368 s和0.110 s。 In order to solve the problem that identification is easy to be counterfeited and faked, we proposed an identification method that used a near infrared camera to capture the dorsal hand veins and had a liveness detection function. The vein features in the images of dorsal hand veins provided a basis for the identification and the periodic features of the pulse waves acquired at the same time were taken as the sign of liveness detection. Specifically, a self-developed experimental setup of capturing dorsal hand veins and pulse waves was adopted to study the characteristics of the dorsal hand vein images from 70 individuals and the vein images from the living and false bodies, and an algorithm of improving the identification accuracy was proposed. Furthermore, principal component analysis was applied to reduce the dimension of the vein feature vector in the living body and simplify the classification algorithm, and Mahalanobis distance was combined to remove abnormal samples so as to improve the recognition accuracy. Then, the parameter-optimized random forests(RF) algorithm and support vector machine(SVM) algorithm were employed to achieve accurate identification of dorsal hand veins. The results show that the identification of different individuals can be performed by combining the features of dorsal hand veins with the RF and SVM algorithms. The recognition accuracy is 99.28% and 99.86%, and the recognition time is 0.368 s and 0.110 s, respectively.
作者 陈秀莲 黄梅珍 富雨超 Chen Xiulian;Huang Meizhen;Fu Yuchao(Department of Instrument Science and Engineering,School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2021年第6期84-91,共8页 Acta Optica Sinica
基金 国家自然科学基金(61775133)。
关键词 图像处理 模式识别 近红外成像 手背静脉 活体检测 主成分分析 马氏距离 image processing pattern recognition near infrared imaging dorsal hand vein liveness detection principal component analysis Mahalanobis distance
  • 相关文献

参考文献15

二级参考文献104

  • 1王科俊,丁宇航,庄大燕,王大振.手背静脉图像阈值分割[J].自动化技术与应用,2005,24(8):19-22. 被引量:16
  • 2周斌,林喜荣,贾惠波.多分辨率滤波在手背血管特征提取中的应用[J].计算机辅助设计与图形学学报,2006,18(1):41-45. 被引量:7
  • 3腾轶超,丁海曙,龚庆成,贾在申,黄岚,王培勇.近红外光谱监测体外循环手术中脑组织氧合状况的研究[J].光谱学与光谱分析,2006,26(5):828-832. 被引量:20
  • 4C. Garcia, G. Zikos, G. Tziritas. Wavelet packet analysis for face recognition[J]. Image and Vision Computing, 2000, 18(4) :289-297. 被引量:1
  • 5C. Cortes, V. Vapnik. Support vector networks[J]. Machine Learning, 1995, 20(3) : 273-297. 被引量:1
  • 6Kejun Wang, Yan Zhang, Zhi Yuan et al.. Hand vein recognition based on multi supplemental Features of multi-classifier fusion decision[C]. The 2006 IEEE International Conference on Mechatronics and Automation, 2006. 1790-1795. 被引量:1
  • 7Chihlung Lin, Kuochin Fan. Biometric verification using thermal images of palm dorsa vein patterns[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2004, 14 (2): 199-213. 被引量:1
  • 8L. Wang, G. Leedham, S.-Y. Cho. Infrated imaging of hand vein patterns for biometric purposes[J]. Computer Vision, 2007, 1(3-4): 113-122. 被引量:1
  • 9J. M. Cross, C. L. Smith. Thermographic imaging of the subcutaneous vascular network of the back of the hand for biometric identification [C]. Proceedings of 29th International Carnahan Conference on Security Technology, 1995. 20-35. 被引量:1
  • 10M. Shahin, A. Badawi, M. Kamel. Biometric authentication using fast correlation of near infrared hand vein patterns[J]. International Journal of Biomedical Sciences, 2007, 2 ( 3 ) : 141-148. 被引量:1

共引文献334

同被引文献88

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部