期刊文献+

Extremum of a time-inhomogeneous branching random walk

原文传递
导出
摘要 Consider a time-inhomogeneous branching random walk, generated by the point process Ln which composed by two independent parts: ‘branching’offspring Xn with the mean 1+B(1+n)−β for β∈(0,1) and ‘displacement’ ξn with a drift A(1+n)^(−2α) for α∈(0,1/2), where the ‘branching’ process is supercritical for B>0 but ‘asymptotically critical’ and the drift of the ‘displacement’ ξn is strictly positive or negative for |A|>0 but ‘asymptotically’ goes to zero as time goes to infinity. We find that the limit behavior of the minimal (or maximal) position of the branching random walk is sensitive to the ‘asymptotical’ parameter β and α.
出处 《Frontiers of Mathematics in China》 SCIE CSCD 2021年第2期459-478,共20页 中国高等学校学术文摘·数学(英文)
基金 This work was supported by the National Key Research and Development Program of China(No.2020YFA0712900) the National Natural Science Foundation of China(Grant NO.11971062) the Fundamental Research Funds for the Central Universities Grant(No.N180503019).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部