期刊文献+

矿山安全态势预测预警研究 被引量:4

Research on mine safety situation forecast and early warning
下载PDF
导出
摘要 基于物联网技术获取矿山安全大数据并加以充分挖掘、利用,有利于实现矿山安全态势预测预警。以瓦斯爆炸事故为例,通过分析事故致因,构建了矿山安全态势评价指标体系,并对各评价指标进行了量化。基于长短期记忆(LSTM)网络和贝叶斯网络构建了矿山安全态势预测模型,根据矿山安全监测数据,通过LSTM得到矿山安全态势评价指标预测值,由贝叶斯网络根据评价指标预测值推理得出矿山安全事故风险概率,实现矿山安全态势预测。基于安全态势预测结果建立了预警机制,根据警情划分4级预警级别及响应部门,制定了相应的预警措施。以某煤矿某次瓦斯爆炸事故为例进行反演,结果表明基于LSTM和贝叶斯网络的矿山安全态势预测结果与实际情况吻合。 Based on the Internet of Things technology,obtaining the mine safety big data and making full use of the data are helpful to realize the forecast and early warning of mine safety situation.Taking the gas explosion accident as an example,by analyzing the cause of the accident,a mine safety situation evaluation index system is constructed,and each evaluation index is quantified.Based on the long and short-term memory(LSTM)network and the Bayesian network,a mine safety situation forecast model is proposed.According to the mine safety monitoring data,the mine safety situation evaluation index forecast values are obtained through the LSTM.The risk probability of mine safety accidents is inferred from Bayesian networks based on the evaluation index forecast values to obtain mine safety situation forecast.Based on the safety situation forecast results,an early warning mechanism is established.4 warning levels and response departments are classified according to the warning situation,and corresponding early warning measures are established.An inversion of a gas explosion accident in a coal mine is used as an example,and the results show that the forecast results of mine safety situation based on LSTM and Bayesian network are consistent with the actual situation.
作者 李贤功 宋学锋 张明慧 唐润 刘锋 LI Xiangong;SONG Xuefeng;ZHANG Minghui;TANG Run;LIU Feng(School of Mines, China University of Mining and Technology, Xuzhou 221116, China;School of Economic and Management, China University of Mining and Technology, Xuzhou 221116, China;School of Management Science and Engineering, Nanjing University of Finance and Economics, Nanjing 210023, China)
出处 《工矿自动化》 北大核心 2021年第5期35-39,111,共6页 Journal Of Mine Automation
基金 “十三五”国家重点研发计划项目(2017YFC0804408)。
关键词 矿山物联网 矿山大数据 矿山安全态势 安全态势预测预警 瓦斯爆炸事故 贝叶斯网络 长短期记忆网络 mine Internet of Things mine big data mine safety situation safety situation forecast and early warning gas explosion accident Bayesian network long and short-term memory network
  • 相关文献

参考文献12

二级参考文献156

共引文献231

同被引文献53

引证文献4

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部