期刊文献+

Plasmonic tweezers: for nanoscale optical trapping and beyond 被引量:7

原文传递
导出
摘要 Optical tweezers and associated manipulation tools in the far field have had a major impact on scientific and engineering research by offering precise manipulation of small objects.More recently,the possibility of performing manipulation with surface plasmons has opened opportunities not feasible with conventional far-field optical methods.The use of surface plasmon techniques enables excitation of hotspots much smaller than the free-space wavelength;with this confinement,the plasmonic field facilitates trapping of various nanostructures and materials with higher precision.The successful manipulation of small particles has fostered numerous and expanding applications.In this paper,we review the principles of and developments in plasmonic tweezers techniques,including both nanostructure-assisted platforms and structureless systems.Construction methods and evaluation criteria of the techniques are presented,aiming to provide a guide for the design and optimization of the systems.The most common novel applications of plasmonic tweezers,namely,sorting and transport,sensing and imaging,and especially those in a biological context,are critically discussed.Finally,we consider the future of the development and new potential applications of this technique and discuss prospects for its impact on science.
出处 《Light(Science & Applications)》 SCIE EI CAS CSCD 2021年第4期475-515,共41页 光(科学与应用)(英文版)
基金 the National Natural Science Foundation of China(91750205,61975128,61975129 and 61427819) Leading Talents of Guangdong Province Programme(00201505) Natural Science Foundation of Guangdong Province(2016A030312010 and 2019TQ05X750) and Science and Technology Innovation Commission of Shenzhen(KQTD2017033011044403,ZDSYS201703031605029,KQTD20180412181324255,JCYJ20180305125418079,andJCYJ2017818144338999).
  • 相关文献

参考文献4

二级参考文献10

共引文献58

同被引文献65

引证文献7

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部