期刊文献+

基于峰值电流与脉冲宽度的微细电极控形研究 被引量:2

Research on the shape wear control of micro electrode based on peak current and pulse width
下载PDF
导出
摘要 针对微细电火花孔加工时因微细电极形状损耗难以控制导致的微孔加工精度不高问题,提出利用峰值电流和脉冲宽度两个重要加工参数控制微细电极形状损耗的方法,并运用差分进化(Differental Evolution,DE)算法优化的支持向量机(Support Vector Machine,SVM)(DE-SVM)方法建立了微细电极形状损耗的分类预测模型。研究表明:该方法是可行的,对于给定的试验数据,相比常用的粒子群(Particle Swarm Optimization,PSO)算法优化的SVM(PSO-SVM)方法和遗传算法(Genetic Algorithm,GA)优化的SVM(GA-SVM)方法,DE-SVM方法能够获得分类准确率高且拟合度合理的分类预测模型;不同微细电极形状损耗形式具有紧密的相关性,在较小的峰值电流(4~20 A)和较大的脉冲宽度(>5μs)条件下易获得底部规整的微孔。研究成果从微细电极形状损耗控制角度出发,为提高微细电火花孔的加工精度提供了一种思路。 In order to solve the problem of low precision in micro-EDM drilling due to the difficulty in controlling the shape wear of micro-electrode,a method was put forward,which using the peak current and pulse width to control the shape wear of electrode,and the shape wear of electrode classification prediction model was established by using Differental Evolution algorithm optimized Support Vector Machine(DE-SVM).The research shows that this method is feasible.For given experimental data,compared with the Particle Swarm Optimization optimized SVM(PSO-SVM)and the Genetic Algorithm optimized SVM(GA-SVM),DE-SVM method can obtain a classification prediction model with high classification accuracy and reasonable fitting degree.The wear pattern of different electrode shapes wear has a close correlation.Under the condition of small peak current(4~20 A)and large pulse width(>5μs),it′s easy to get the micro holes,which the bottom is regular.The results of research provide a way to improve the machining precision of micro EDM drilling from the shape wear control of micro electrode.
作者 王慧 王元刚 李晓鹏 WANG Hui;WANG Yuangang;LI Xiaopeng(School of Mechanical Engineering,Dalian University,Dalian 116622,China)
出处 《现代制造工程》 CSCD 北大核心 2021年第5期1-5,共5页 Modern Manufacturing Engineering
基金 国家自然科学基金项目(51005027)。
关键词 微细电火花孔加工 形状损耗 差分进化算法 支持向量机 分类预测模型 micro-EDM drilling shape wear Differental Evolution(DE)algorithm Support Vector Machine(SVM) classification prediction model
  • 相关文献

参考文献2

二级参考文献14

  • 1迟关心,褚旭阳,狄士春,王振龙.管电极微细电火花铣削加工[J].吉林大学学报(工学版),2011,41(S1):121-126. 被引量:9
  • 2Tricarico C,Forel B,Orhant E.Measuring de- vice and method for determining the length of an elec- trode[].US:.2000 被引量:1
  • 3Mizugaki Y.Contouring electrical discharge machin- ing with on-machine measuring and dressing of a cylin- drical graphite[].Proceedings of the IEEE IECON nd International Conference.1996 被引量:1
  • 4Feng T,Xiao-mei X U,Tso S K,et al.Applica- tion of evolutionary neural network in impact acous- tics based nondestructive inspection of tile-wall[].Proc International Conference on Communications Circuits and Systems.2005 被引量:1
  • 5Chen X G.Artificial neural network technology and application[]..2003 被引量:1
  • 6Poggio T,Girosi F.Networks for approximation and learning[].Proceedings of Tricomm.1990 被引量:1
  • 7Park J,Sandberg I W.Approximation and radial-basis-function networks[].Neural Computation.1993 被引量:1
  • 8Sanner RM,Slotine JJE.Gaussian networks for direct adaptive control[].IEEE Transactions on Neural Networks.1992 被引量:1
  • 9Chen S,Cowan C F N,Grant P M.Orthogonal Least Squares Learning Algorithm for Radial Function Networks[].IEEE Transactions on Neural Networks.1991 被引量:1
  • 10Yu ZY,Masuzawa T,Fujino M.Micro-EDM for three-dimensional cavities-Development of uniform wear method[].Annals of the CIRP.1998 被引量:1

共引文献3

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部