期刊文献+

石墨烯/硅肖特基结太阳能电池的研究进展 被引量:2

Research Progress of Graphene/Silicon Schottky Junction Solar Cells
下载PDF
导出
摘要 太阳能电池利用光伏效应直接将光能转变成电能,能有效地解决未来能源危机和环境污染,符合可持续发展的理念。传统的硅基太阳能电池存在需要高温过程,工艺复杂,发电成本无法与火电和水电相抗衡等问题。针对上述问题,近年来研究人员开发了诸多新型太阳能电池以降低制造成本,其中采用石墨烯作为透明电极的石墨烯/硅肖特基结太阳能电池被认为是新一代低成本、高效率的太阳能电池。然而,石墨烯功函数较低、方阻较高,载流子沿界面复合严重,并且平面硅反射率较高,导致石墨烯/硅肖特基结太阳能电池的效率远低于传统硅基太阳能电池。因此,近年来,主要研究重点在石墨烯掺杂改性、抑制界面处的载流子复合和降低器件的反射率等方面。目前,石墨烯/硅肖特基结太阳能电池的光电转换效率(PCE)已由1.65%提升到16.61%。目前,成功应用于提升器件性能的石墨烯掺杂剂主要有HNO_(3)、金属纳米粒子和双(三氟甲磺酰基)酰胺(TFSA)等。其中,HNO3应用最为广泛,但其稳定性较差,采用金属纳米粒子等物理掺杂可以同时提升器件的PCE和稳定性。在石墨烯和硅之间引入Al_(2)O_(3)、MoS_(2)、量子点等界面层和表面钝化,可以有效地减少硅表面的悬空键,抑制载流子复合,从而提高器件的性能。此外,研究人员通过在石墨烯表面引入TiO_(2)、PMMA、MgF_(2)/ZnS等减反射膜,或在硅表面引入纳米线、多孔硅等微结构,来降低器件的反射率,提高其对光的利用率。本文总结了近年来石墨烯/硅太阳能电池的研究进展,简要介绍了器件的结构和原理,重点介绍了石墨烯掺杂、石墨烯层数选择、硅的纳米或微米结构、减反射膜和界面优化等手段,分析了目前石墨烯/硅肖特基结太阳能电池商业化所面临的问题并对其提出展望,以期为制备效率高和稳定性强的新型石墨烯/硅肖特基结太阳能电� Solar cells directly convert light energy into electricity by photovoltaic effect,which can effectively solve future energy crisis and environmental pollution,and conform to the concept of sustainable development.Traditional silicon-based solar cells need high-temperature process,which is complex,and the cost of power generation can not compete with thermal power and hydropower.In order to solve these problems,researchers have developed many novel solar cells in recent years to reduce the manufacturing cost.Among them,graphene/silicon Schottky junction solar cells with graphene as transparent electrode are considered as a new generation of low-cost and high-efficiency solar cells.However,the efficiency of graphene/silicon Schottky junction solar cells are much lower than that of traditional silicon-based solar cells due to its low work function,high sheet resistance,serious recombination of charge carriers along the interface,and high plane silicon reflectivity.Therefore,in recent years,the main research focuses on the graphene doping modification,suppressing carrier recombination at the interface and the reduction of reflectivity of devices.At present,the photoelectric conversion efficiency(PCE)of graphene/silicon Schottky junction solar cells has increased from 1.65%to 16.61%.At present,the successful application of graphene dopants to improve the performance of devices mainly includes HNO_(3),metal nanoparticles,bis(trifluoromethanesulfonyl)-amide(TFSA)and so on.Among them,HNO_(3) is the most widely used,but its stability is poor.Physical doping such as metal nanoparticles can simultaneously improve the PCE and stability of the device.The introduction of Al_(2)O_(3),MoS_(2),quantum dots and other interface layers and surface passivation between graphene and silicon can effectively reduce the suspended bonds on the silicon surface and inhibit carrier recombination,so as to improve the performance of devices.In addition,by introducing antireflective films such as TiO_(2),PMMA,MgF_(2)/ZnS on the surface of graphe
作者 刘家森 陈秀华 李绍元 马文会 李毅 胡焕然 马壮 LIU Jiasen;CHEN Xiuhua;LI Shaoyuan;MA Wenhui;LI Yi;HU Huanran;MA Zhuang(College of Materials Science and Engineering,Yunnan University,Kunming 650091,China;National Engineering Laboratory for Vacuum Metallurgy,Faculty of Metallurgical and Energy Engineering,Kunming University of Science and Technology,Kunming 650093,China)
出处 《材料导报》 EI CAS CSCD 北大核心 2021年第9期9115-9122,共8页 Materials Reports
基金 国家自然科学基金(61764009,51762043,51974143) 国家重点研发计划(2018YFC1901801,2018YFC1901805) 云南省重大科技专项(2019ZE007) 云南省自然科学基金重点项目(2018FA027)。
关键词 石墨烯 肖特基结 太阳能电池 界面层 graphene silicon Schottky junction solar cells interface layer
  • 相关文献

参考文献1

二级参考文献35

  • 1Lewis, J. R. Nat. Prod. Rep. 1996, 13, 435. 被引量:1
  • 2Stauffer, S. R.; Coletta, C. J.; Tedesco, R.; Nishiguchi, G.; Carlson, K.; Sun, J. J. Med. Chem. 2000, 43, 4934. 被引量:1
  • 3Kalluraya, B.; Isloor, A. M.; Frank, P. V.; Jagadeesha, R. L. Indian J. Heterocycl. Chem. 2004,13, 245. 被引量:1
  • 4Pipalia, N. H.; Huang, A.; Ralph, H.; Rujoi, M.; Maxfield, F. R. J.Lipid Res. 2006, 47, 284. 被引量:1
  • 5McPhee, I.; Breslin, C.; Kewney, J. P.; MacKenzie, S. J.; Cooreman, A.; Gibson, L. C. D.; Hammond, S. WO 2004096199 A2, 2004 [Chem. Abstr. 2004,141, 406112],. 被引量:1
  • 6Birchmeier, W.; Rademann, J.; Grosskopf, S. WO 2006128909 Al, 2006 [Chem. Abstr. 2006,146, 45505],. 被引量:1
  • 7Wang, R. X.; Ma, D. W.; Li, X.; Sun, W.; Zhou, B. C.; Shi, Z. M.; Zhang, X. L.; Zhu, C. X.; Li, W. W. CN 101343268 A, 2009 [Chem. Abstr. 2009, 150, 191511],. 被引量:1
  • 8Gavathiotis, E.; Reyna, D. E.; Bellairs, J. A.; Leshchiner, E. S.; Walensky, L. D. Nat. Chem. Biol. 2012, 8, 639. 被引量:1
  • 9Reed, J. C. Nat. Rev. Drug Discovery 2002,1, 111. 被引量:1
  • 10Fesik, S. W. Nat. Rev. Cancer 2005, 5, 876. 被引量:1

共引文献2

同被引文献7

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部