期刊文献+

基于协同学习的柔性关节智能控制 被引量:1

Intelligent Control of Flexible Joints Based on Collaborative Learning
下载PDF
导出
摘要 对于带有柔性原件的空间机器人,其精确的动力学模型往往难以建立。柔性原件所引入的非线性因素也同时增加了机器人控制系统的复杂度。为了提高柔性关节机器人的轨迹跟踪性能,提出了无模型的柔性关节智能控制方法,建立了新的协同学习框架。并将此框架用于的智能控制器的训练。最终在轨迹跟踪实验中,和传统PID控制器、非协同学习的RBF神经网络PID控制器相比较,智能控制器的跟踪误差减少了39.24%和32.70%。这表明了新的协同学习框架和智能控制器的有效性和可行性。 For space robots with flexible components,its precise dynamic model is often difficult to establish.The non-linear factors introduced by the flexible components also increase the complexity of the robot control system.In order to improve the trajectory tracking performance of flexible joint robots,this paper proposes a model-free intelligent control method for flexible joints and establishes a new collaborative learning framework,and uses this framework for the training of the intelligent controller.Finally,in the trajectory tracking experiment,compared with the traditional PID controller and the non-cooperative learning RBF neural network PID controller,the tracking error of the intelligent controller is reduced by 39.24%and 32.70%.This shows the effectiveness and feasibility of the new collaborative learning framework and intelligent controller.
作者 施群 蒋坤 Shi Qun
出处 《工业控制计算机》 2021年第5期97-99,101,共4页 Industrial Control Computer
关键词 柔性关节 协同学习 智能控制器 神经网络 flexible joints collaborative learning intelligent controller neural network
  • 相关文献

参考文献4

二级参考文献41

  • 1刘强,尔联洁,刘金琨.参数不确定机械伺服系统的鲁棒非线性摩擦补偿控制[J].自动化学报,2003,29(4):628-632. 被引量:26
  • 2彭济根,倪元华,乔红.柔性关节机操手的神经网络控制[J].自动化学报,2007,33(2):175-180. 被引量:23
  • 3CHIEN M C,HUANG A C.Adaptive control for flexible-joint electrically driven robot with time-varying uncertainties[J].IEEE Transactions on Industrial Electronics,2007,54(2):1032-1038. 被引量:1
  • 4HUANG AC,CHEN Y C.Adaptive sliding control for single-link flexible-joint robot with mismatched uncertainties[J].IEEE Transactions on Control Systems Technology,2004,12(5):770-775. 被引量:1
  • 5YIM J G,YEON J S,PARK J H,et al.Robust control using recursive design method for flexible joint robot manipulator[C] // IEEE International Conference on Robotics and Automation,April 10-14,2007,Rome,Italy.United States:Institute of Electrical and Electronics Engineers Inc.,2007:3 805-3 810. 被引量:1
  • 6LEE S H,HUR J S,CHO H C,et al.A PID-type robust controller design for industrial robots with flexible joints[C] // 2006 SICE-ICASE International Joint Conference,October 18-21,2006,Busan,Korea.United States:Inst.of Elec.and Elec.Eng.Computer Society,2006:5 905-5 910. 被引量:1
  • 7BONSIGNORE A,FERRETTI G,MAGNANI G.Coulomb friction limit cycles in elastic positioning systems[J].Journal of Dynamic Systems,Measurement and Control,Transactions of the ASME,1999,121(2):298-301. 被引量:1
  • 8GERVINI V I,GOMES S C P,Da ROSA V S.A new robotic drive joint friction compensation mechanism using neural networks[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2003,25(2):129-139. 被引量:1
  • 9KIGUCHI K,HENRICHFREISE H,HESSELER K.Friction compensation of the electromechanical drive systems using neural networks[C] // IECON Proceedings (Industrial Electronics Conference),November 2-6,2004,Busan,Korea.United States:Institute of Electrical and Electronics Engineers Computer Society,2004:1 758-1 762. 被引量:1
  • 10KIM Y H,FRANK L L.Reinforcement adaptive learning neural-net based friction compensation control for high speed and precision[J].IEEE Transactions on Control Systems Technology,2000,6(8):118-126. 被引量:1

共引文献49

同被引文献2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部