期刊文献+

基于深度学习的目标跟踪技术

Object Tracking Technology Based on Deep Learning
下载PDF
导出
摘要 当前,基于目标跟踪技术的应用产品在教育、医学及军事等领域得到广泛应用。深度学习的崛起使得目标跟踪技术有了突破性进展,它冲破传统机器学习的束缚,创造性地提出许多鲁棒的跟踪模型。基于此,系统地研究深度跟踪技术,总结分析深度跟踪技术的发展现状和未来趋势。 At present,application products based on target tracking technology are widely used in education,medicine,military and other fields.The rise of deep learning makes a breakthrough in target tracking technology.It breaks through the shackles of traditional machine learning and creatively proposes many robust tracking models.Based on this,this paper systematically studies the depth tracking technology,summarizes and analyzes the development status and future trend of depth tracking technology.
作者 侯淋 杨顺华 黄时加 HOU Lin;YANG Shunhua;HUANG Shijia(China Aerodynamics Research and Development Center,Mianyang 621000,China;School of Electronics and Communication Engineering,Sun Yat-sen University,Guangzhou 511400,China)
出处 《电视技术》 2021年第4期21-24,共4页 Video Engineering
关键词 深度跟踪技术 判别模型 相关滤波 深度特征 deep tracking technology discriminative model correlation filter deep feature
  • 相关文献

参考文献4

二级参考文献36

  • 1张宏志,张金换,岳卉,黄世霖.基于CamShift的目标跟踪算法[J].计算机工程与设计,2006,27(11):2012-2014. 被引量:57
  • 2常发亮,马丽,乔谊正.视频序列中面向人的多目标跟踪算法[J].控制与决策,2007,22(4):418-422. 被引量:16
  • 3Takala V, Pietikainen M. Multi-object tracking using color, texture and motion. VS, 2007:1 - 7. 被引量:1
  • 4Ma LL, Cheng Jian, Lu HQ. Multi-cue collaborative kernel tracking with cross ratio invariant constraint. ICCVGIP, 2008:665 - 672. 被引量:1
  • 5Kumar P, Brooks MJ. An adaptive bayesian technique for tracking multiple objects. Pattern Recognition, 2007:657 - 665. 被引量:1
  • 6Li Z., Gong HF, ZHu SC. Dynamic feature cascade for multiple object tracking with track ability analysis. EMMCVPR, 2007:350-361. 被引量:1
  • 7Pemkopf F. Tracking of multiple targets using online learning for reference model adaptation. IEEE Trans on SMC-B, 2008,38(6): 1465 - 1475. 被引量:1
  • 8Bose BW, Wang XG Grimson E. Detecting and tracking multiple interacting objects without class-specific models. CSAIL, 2006. 被引量:1
  • 9Osawa TS, Wu X J, Wakabayashi KR. Human tracking by particle filtering using full 3d model of both target and environment using full 3d model of both target and environment. ICPR, 2006. 被引量:1
  • 10Yao Jian, Odobez JM. Multi-camera 3D person tracking with particle filter in a surveillance environment. EUSIPCO, 2008:25 - 29. 被引量:1

共引文献297

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部