摘要
为了揭示点蚀损伤对构件破坏模式和极限承载力的影响机理,完善腐蚀角钢构件的力学性能评估体系,基于腐蚀试验数据和数值模拟,提出针对随机点蚀角钢构件的有限元模型构建方法,研究腐蚀损伤体积、蚀坑尺寸和蚀坑分布位置对Q460点蚀等边角钢构件极限抗拉承载力的影响,并根据其极限抗拉承载力劣化规律,采用非线性回归的方式拟合了点蚀角钢极限抗拉承载力的折减公式。结果表明,随机点蚀角钢的极限抗拉承载力退化整体上与腐蚀损伤体积呈正相关,蚀坑半径和蚀坑分布位置对承载力的影响较小,但蚀坑深度和蚀坑分布范围的影响不容忽视,拟合的点蚀角钢极限抗拉承载力的折减公式较刚度折减法和厚度折减法误差更小,准确度较高,可见其适用于点蚀角钢构件极限抗拉承载力的计算,可以应用到实际工程分析中。
To reveal the mechanism of pitting damage affecting the failure mode and ultimate bearing capacity of components,and improve the evaluation system of mechanical properties of corroded angle steel members,a method of constructing a finite element model for random pitting angle steel members was proposed based on corrosion test data and numerical simulation.Effects of corrosion damage volume,pit size,and pit distribution position on the ultimate tensile bearing capacity of Q460 pitting equilateral angle steel members were examined.Nonlinear regression according to the degradation law of its ultimate tensile bearing capacity was used to fit the discount formula of ultimate tensile bearing capacity of pitting angle steel.Results show that the degradation of ultimate tensile bearing capacity of random pitting angle steel is positively related to corrosion damage volume.The crater radius and the pit location have little effects on the bearing capacity,but the influence of pit depth and pit distribution can not be ignored.The discount formula of ultimate tensile bearing capacity of pitting angle steel is more accurate with smaller errors than those of the stiffness reduction method and thickness reduction method.It is proven that this method is suitable for the calculation of the ultimate tensile bearing capacity of the pitting angle steel member and can be applied in practical engineering analysis.
作者
王雪飞
郭耀杰
孙云
鲍超
WANG Xue-fei;GUO Yao-jie;SUN Yun;BAO Chao(School of Civil Engineering,Wuhan University,Wuhan 430072,China)
出处
《科学技术与工程》
北大核心
2021年第12期4882-4890,共9页
Science Technology and Engineering
基金
国家自然科学基金(51378401)。
关键词
随机点蚀
等边角钢
极限承载力
有限元
random pitting
equilateral angle steel
ultimate bearing capacity
finite element