期刊文献+

基于DBN的多传感器数据融合煤矿事故预警系统 被引量:2

Multi-sensor Data Fusion Early Warning System for Coal Mine Accidents Based on DBN
下载PDF
导出
摘要 针对煤矿气体泄漏事故频发、监测难度大、环境参数界定模糊、可靠性差等问题,提出了基于DBN模型的多传感器数据融合的煤矿事故预警系统设计。系统利用NB-IOT技术设计了矿井环境信息采集节点,实时采集矿井内氧气、二氧化碳、烷类气体浓度,通过深度信念网络对多个传感器数据进行融合,提取特征并分类,直接得到矿井内环境状态,有效降低了环境参数模糊造成的判断失误。实验表明,系统能够对矿井状态进行准确判断,对煤矿安全事故预警有较大的参考价值。 In view of the frequent occurrence of gas leakage accidents in coal mines, the difficulty of monitoring, fuzzy definition of environmental parameters, poor reliability and other issues, a design of multi-sensor data fusion based on DBN model for coal mine accident early warning system is proposed.The system uses NB-IOT technology to design the mine environment information collection module, real-time collection of oxygen, carbon dioxide, alkane gas concentration in the mine, through the depth belief network to fuse multiple sensor data, through the extraction of features and classification, directly get the mine environment state, effectively reduce the judgment error caused by the fuzzy environmental parameters. The experiment shows that the system can accurately judge the state of the coal mine and has a great reference value for the early warning of coal mine safety accidents.
作者 傅彬 FU Bin(Shaoxing Vocational and Technical College,Shaoxing 312000,China)
出处 《煤炭技术》 CAS 北大核心 2021年第4期133-136,共4页 Coal Technology
基金 浙江省高等教育十三五第一批教学改革研究项目(jg20180706)。
关键词 DBN NB-IOT 多传感器数据融合 煤矿预警 DBN NB-IOT multi-sensor data fusion coal mine early warning
  • 相关文献

参考文献7

二级参考文献74

  • 1吕干云,程浩忠,董立新,翟海保.基于多级支持向量机分类器的电力变压器故障识别[J].电力系统及其自动化学报,2005,17(1):19-22. 被引量:57
  • 2王道勇,双冠成.模糊识别在变压器故障诊断中的应用[J].电力自动化设备,1996,16(4):64-66. 被引量:2
  • 3吴玉国,邬剑明,王俊峰.煤层自燃指标气体的试验研究[J].中国煤炭,2007,33(4):40-42. 被引量:38
  • 4Bengio Y.Learning deep architectures for AI[J].Foundations and Trends in Machine Learning,2009,2(1):1-127. 被引量:1
  • 5Hinton G E,Salakhutdinov R R.Reducing the dimensionality of data with neural networks[J].Science,2006,313(5786):504-507. 被引量:1
  • 6Vincent P,Larochelle H,Lajoie L,et al.Stacked denoising autoenco-ders:learning useful representations in a deep network with a local denoising criterion[J].Transportation Journal of Machine Lear-ning Research,2010,11(12):3371-3408. 被引量:1
  • 7Yu Dong,Deng Li.Deep convex net:a scalable architecture for speech pattern classification[C] //Proc of the 12th Annual Confe-rence of International Speech Communication Association.2011:2285-2288. 被引量:1
  • 8Poon H,Domingos P.Sum-product networks:a new deep architecture[C] //Proc of IEEE International Conference on Computer Vision Workshops.2011:689-690. 被引量:1
  • 9Mohamed A,Sainath T N,Dahl G,et al.Deep belief networks using discriminative features for phone recognition[C] //Proc of IEEE International Conference on Acoustics,Speech and Signal Processing.2011:5060-5063. 被引量:1
  • 10Yang He,Cheng Yujiang,Heng Xuyin,et al.Superhydrophobic silicon surfaces with micro-nano hierarchical structure via deep reactive ion etching and galvanic etching[J].Journal of Colloid and Interface Science,2011,364(1):219-229. 被引量:1

共引文献110

同被引文献24

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部