期刊文献+

多季相混合像元部分分解特征的不透水面分类 被引量:2

Impervious surface area classification based on partial unmixing of multi-season mixed pixels
原文传递
导出
摘要 针对利用光谱混合分解提取不透水面特征通常受到端元类型和数量的限制,同时植被变化会影响估计精度的问题,该文提出了一种综合季相和植被变化信息的不透水面提取框架。基于混合像元部分分解算法——混合调谐匹配滤波(MTMF),设计了多季相组合MTMF(SCMTMF)特征和多季相叠加MTMF(SSMTMF)两种策略,构造了不透水面的多季相MTMF特征,将不透水特征与多季相植被指数结合利用支持向量机实现对不透水面的精确分类。结果表明,利用多季相特征得到的不透水面提取效果相较于单季相有较明显的改善,该文所提出的策略有利于提高不透水面的估计精度。 For the problems that features of impervious surfaces extracted by spectral mixture analysis(SMA) are usually limited by the determination of the endmembers, and the estimation accuracy can be affected by vegetation change, a framework of impervious surface extraction based on multi-season information was proposed in this paper. Based on mixture tuned matched filtering(MTMF) partial unmixing algorithm, multi-season MTMF features of the impervious surfaces were constructed according to two different strategies: seasons combined MTMF(SCMTMF) feature and seasons stacked MTMF(SSMTMF) feature. Then, a multi-season vegetation index was introduced to optimize the features to achieve accurate classification of impervious surfaces. Support vector machine was used to classify the impervious surface area(ISA) of the study areas based on multi-season MTMF features. Improvements were achieved using multi-season imagery, indicating that the proposed strategy could improve the estimation accuracy of impervious surface areas.
作者 陈姣 黄远程 李朋飞 CHEN Jiao;HUANG Yuancheng;LI Pengfei(College of Geomatics,Xi’an University of Science and Technology,Xi’an 710054,China)
出处 《测绘科学》 CSCD 北大核心 2021年第4期90-99,共10页 Science of Surveying and Mapping
基金 国家自然科学基金项目(41807063)。
关键词 不透水面 Landsat OLI影像 多季相影像 支持向量机 混合光谱分解 MTMF impervious surface area Landsat OLI imagery multi-season images support vector machine(SVM) spectral mixture analysis MTMF
  • 相关文献

参考文献3

二级参考文献66

  • 1江利明,廖明生,林珲,杨立民,汪长城.利用雷达干涉数据进行城市不透水层百分比估算[J].遥感学报,2008,12(1):176-185. 被引量:18
  • 2徐涵秋.基于影像的Landsat TM/ETM^+数据正规化技术[J].武汉大学学报(信息科学版),2007,32(1):62-66. 被引量:76
  • 3廖明生,江利明,林珲,杨立民.基于CART集成学习的城市不透水层百分比遥感估算[J].武汉大学学报(信息科学版),2007,32(12):1099-1102. 被引量:21
  • 4国务院第一次全国地理国情普查领导小组办公室. 地理国情普查内容与指标[EB/OL]. http://hainan.sbsm.gov.cn/accessory/Oct24,2013115311AM.pdf, 2013. 被引量:1
  • 5Jr Arnold C L, Gibbons C J. Impervious Surface Coverage:The Emergence of a Key Environmental Indicator[J]. Journal of the American Planning Association, 1996, 62(2):243-258. 被引量:1
  • 6Weng Q. Remote Sensing of Impervious Surfaces in the Urban Areas:Requirements, Methods, and Trends[J]. Remote Sensing of Environment, 2012, 117:34-49. 被引量:1
  • 7Hurd J D, Civco D L. Temporal Characterization of Impervious Surfaces for the State of Connecticut[C]. The ASPRS Annual Conference, Denver, Colorado, 2004. 被引量:1
  • 8Harbor J M. A Practical Method for Estimating the Impact of Land-Use Change on Surface Runoff, Groundwater Recharge and Wetland Hydrology[J]. Journal of the American Planning Association, 1994, 60(1):95-108. 被引量:1
  • 9Yuan F, Bauer M E. Comparison of Impervious Surface Area and Normalized Difference Vegetation Index as Indicators of Surface Urban Heat Island Effects in Landsat Imagery[J]. Remote Sensing of Environment, 2007, 106(3):375-386. 被引量:1
  • 10Schueler T R. The Importance of Imperviousness[J]. Watershed Protection Techniques, 1994, 1(3):100-111. 被引量:1

共引文献62

同被引文献49

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部