摘要
在冲击到达间隔服从几何分布,冲击强度服从指数分布的情形下,提出一类累积冲击模型.首先,对冲击到达时刻Sm、冲击次数N(t)和系统失效时所遭受的冲击次数Nτ这三个指标进行研究,并给出其概率分布.其次,在N(t)=n条件下推导给出n个冲击到达时刻的条件概率分布.最后,研究累积冲击模型下系统的寿命T、可靠度函数R(t)和累积损伤Y(t)等指标,并给出其概率分布及系统的可靠性分析.
A kind of cumulative shock model is presented under the condition that the renewal interval obeying the geometric distribution and the shock strength obeying the exponential distribution.Firstly,the shock arrival time Sm,the number of shocks up to the time N(t)and the number of shocks Nτsuffered by the system failure are studied and probability distributions are given.Secondly,n conditional probability distribution of the arrive time of shock is derived under the condition of N(t)=n.Finally,the system life T,reliability function R(t)and cumulative damage Y(t)of the system under the cumulative shock model are studied,and the probability distribution and reliability analysis of the system are given.
作者
姜培华
朱五英
汪晓云
JIANG Pei-hua;ZHU Wu-ying;WANG Xiao-yun(School of Mathematics-physics and Finance, Anhui Polytechnic University, Wuhu Anhui 241000, China)
出处
《菏泽学院学报》
2021年第2期5-10,共6页
Journal of Heze University
基金
安徽省高校自然科学基金重点项目(KJ2019A0161)
国家社会科学基金项目(20BTJ048)
国家基金预研项目(Xjky08201903)
安徽省2020年《数理统计》省级教学示范课项目(皖教秘高〔2020〕165号文)。
关键词
几何分布
冲击模型
累积损伤
系统寿命
可靠度函数
geometric distribution
shock model
cumulative damage
system life
reliability function