期刊文献+

Screening the Optimal Patterned Surfaces Consisting of Cell Morphology Mimicking Micro-pillars and Nanotube Arrays for the Design of Titanium Implants#br# 被引量:1

原文传递
导出
摘要 Micron/nano scale topographic modification has been a significant focus of interest in current titanium(Ti)surface design.However,the influence of micron/nano structured surface on cell or bacterium behavior on the Ti implant has rarely been systematically evaluated.Moreover,except for popular microgrooves,little work has been carried out on the reaction of cells to the bionic structure.In this study,several micro-pillars mimicking cell morphology were prepared on Ti surfaces by lithography and contact printing(ICP)method,and they were further decorated with nanotube arrays by anodization technology.These surface modifications remarkablly increased the surface roughness of pristine Ti surface from 91.17 nm±5.57 nm to be more than 1000 nm,and reduced their water contact angles from 68.3°±0.7°to be 16.9°±2.4°.Then,the effects of these hierarchical micron/nano scale patterns on the behaviors of MG63 osteoblasts,L929 fibroblasts,SCC epithelial cells and P.gingivalis were studied,aiming to evaluate their performance in osseointegration,gingival epithelial sealing and antibacterial ability.Through an innovative scoring strategy,our findings showed that square micro-pillars with 6μm width and 2μm height combined with 85 nm diameter nanotubes was suitable for implant neck design,while square micro-pillars with 3μm width and 3.6μm height combined with 55 nm diameter nanotubes was the best for implant body design.Our study reveals the synergistic effect of the hierarchical micron/nano scale patterns on MG63 osteoblasts,L929 fibroblasts,SCC epithelial cells and P.gingivalis functions.It provides insight into the design of biomedical implant surfaces.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第2期361-374,共14页 仿生工程学报(英文版)
基金 This work was funded by the National Natural Science Foundation of China(No.81801855) Young Elite Scientist Sponsorship Program by CSA(No.2018QNRC001) Fundamental Research Funds for the Central Universities,Chengguan District Science and Technology Project(No.2018-7-6) Lanzhou University Hospital of Stomatology Research Support Fund.
  • 相关文献

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部