期刊文献+

考虑展宽设计的中观交通仿真模型及其标定 被引量:3

Mesoscopic Traffic Simulation Model and Calibration Considering Stretching-segment Design
下载PDF
导出
摘要 为使仿真模型契合城市交通特点、兼具高精确度及高性能,建立了轻量化的中观交通仿真系统与标定流程:以速度—密度模型和点排队模型刻画车辆的运动过程;将点排队模型进行交叉口展宽设计改进,以提升仿真准确性和标定效率;以真实个体检测信息作为标定数据源。模型在宣城城区路网中应用,结果表明:相较于传统点排队模型,展宽设计下的模型能较好反映实际道路特性,通行次序准确率平均可提升139 veh/2 h,且还原了展宽段饱和、溢出场景。标定参数泛化能力强,应用标定结果后的误差在8.7%以下,能够有效保证模型的准确性。 In order to make the simulation model fit the characteristics of urban traffic, both high accuracy and high performance, a lightweight mesoscopic traffic simulation system and the process of calibration are established. The speed-density model and vertical queue model are equivalent to the vehicle movement processes, the simulation accuracy and calibration efficiency are improved by the stretching-segment design at urban intersections of vertical queuing model, and the real individual vehicle information is used as the calibration data source. The application of the model in Xuancheng urban road network shows that, compared with the vertical queuing model, it can better reflect the actual road characteristics. The accuracy of the traffic sequence can be improved by 139 veh/2 h on average, the saturation and overflow scenes of the stretching-segment can be restored. The generalization ability of calibrated parameters is strong, and the error of calibrated parameters in practical application is less than 8.7%, which can effectively ensure the accuracy of the simulation model.
作者 何兆成 林炫华 聂佩林 张荣辉 He Zhaocheng;Lin Xuanhua;Nie Peilin;Zhang Ronghui(Research Center of Intelligent Transport System,Sun Yat-Sen University,Guangzhou 510006,China;Guangdong Provincial Key Laboratory of Intelligent Transport System,Guangzhou 510006,China;Foshan University,Foshan 528011,China)
出处 《系统仿真学报》 CAS CSCD 北大核心 2021年第4期781-791,共11页 Journal of System Simulation
基金 国家自然科学基金(U1811463) 广东省自然科学基金(2014A030313617) 广州市科技计划(201804020012)。
关键词 智能交通 中观交通仿真 点排队 参数标定 车辆身份检测 intelligent transportation mesoscopic traffic simulation vertical queue model parameter calibration automatic vehicle identification
  • 相关文献

参考文献8

二级参考文献60

共引文献47

同被引文献25

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部