期刊文献+

人工智能影像系统在肺部结节诊断中的真实世界数据分析 被引量:6

A Preliminary Study on Real World Data of Artificial Intelligence Imaging System in Pulmonary Nodule Diagnosis
下载PDF
导出
摘要 目的探讨人工智能(AI)影像系统在肺部结节诊断中的真实世界数据。方法收集我院2019年2月至2020年1月单治疗组患有肺部结节并行手术治疗的患者222例。运用基于自适应3D-CNN技术的AI影像系统分析其肺部结节影像,得出关于肺结节大小、密度、位置、良恶性的信息。查询患者术后病理诊断结果,比较AI影像系统分析结果与术后病理诊断结果符合情况,探究AI影像系统在真实世界肺结节诊断能力。结果 222例肺部结节患者AI影像系统分析结果灵敏度、特异度、总符合率、漏诊率分别为67.0%、34.5%、58.6%和33.0%(Kappa=0.0143,P>0.05)。结论 AI影像系统在肺部结节诊断中可信度仍较低。 Objective Explore the real-world data of AI imaging system in the diagnosis of lung nodules.Methods Collected 222 cases of pulmonary nodules in the single treatment group in our hospital from February,2019 to January,2020.Analyze the images of lung nodules with the Deep Wise Medical AI imaging system based on adaptive 3D-CNN technology to obtain information about the size,density,location,benign and malignant of lung nodules.Query the postoperative pathological diagnosis results of patients,compare the analysis results of the AI imaging system with the postoperative pathological diagnosis results,and explore the ability of the AI imaging system to diagnose lung nodules in the real world.Results The sensitivity,specificity,total coincidence rate,and false negative rate of the AI imaging system analysis results of 222 patients with pulmonary nodules was 67. 0%,34. 5%,58. 6%,and 33. 0%,respectively(Kappa = 0. 0143,P>0. 05).Conclusion The credibility of this AI imaging system in the diagnosis of pulmonary nodules is still low.
作者 张涛 张登国 李建 蒲江涛 戴天阳 Zhang Tao;Zhang Dengguo;Li Jian(Department of Thoracic Surgery,Affiliated Hospital of Southwest Medical University,Luzhou,Sichuan 646000;Department 3 of Surgery,Hejiang County People′s Hospital,Luzhou,Sichuan 646000,China)
出处 《四川医学》 CAS 2021年第2期193-196,共4页 Sichuan Medical Journal
关键词 人工智能 肺部结节 肺癌 诊断 artificial intelligence pulmonary nodules lung cancer diagnosis
  • 相关文献

参考文献8

二级参考文献80

  • 1田军,施瑞浩,江涛,曾昭冲,张新,白春学.45例肺癌脑转移放射治疗后生存期的影响因素[J].中国癌症杂志,2006,16(4):310-312. 被引量:12
  • 2黄海林,邹林颖,何远翔,王为民,王强,张军初.乳腺癌的治疗进展[J].中国医药,2006,1(5):317-319. 被引量:18
  • 3李蕾,周延泉,钟义信.基于语用的自然语言处理研究与应用初探[J].智能系统学报,2006,1(2):1-6. 被引量:5
  • 4齐彩霞,安永恒.化疗药物透过血脑屏障的研究进展评价[J].中国医院用药评价与分析,2007,7(1):31-34. 被引量:10
  • 5LEE S L A, KOUZANI A Z, HU E J. Automated detectionof lung nodules in computed tomography images: a review[J]. Mach Vision Appl, 2012,23(1): 151-163. 被引量:1
  • 6DICIOTT1 S,PICOZZI G,FALCHINI M, et al. 3D segmen-tation algorithm of small lung nodules in spiral CT images[J]. Biomedical, 2008,12(1): 7-19. 被引量:1
  • 7DE HOOP B, DE BOO D W, GIETEMA H A, et al. Com-puter-aided detection of lung cancer on chest radiographs:effect on observer performance [J]. Radiology, 2010,257(2): 532-540. 被引量:1
  • 8GOMATHI M. Automated CAD for lung nodule detection u-sing CT scans [C]//International Conference on Data Storageand Data Engineering,Bangalore: 2010: 150-153. 被引量:1
  • 9Lung Imaging Database Consortium CLIDC) [OL]. ?2011-01-01) [2013-03-04]. http://imaging, cancer, gov /programsan-dresources / InformationSystems/LIDC. 被引量:1
  • 10YANAGAWA M,HONDA (),KIKUYAMA A, et al. Pul-monary nodules: effect of adaptive statistical iterative Recon-struction (ASIR) technique on performance of a computer-ai-ded detection (CAD) system-comparison of performance be-tween different-dose CT scans [J]. Eur J Radiol, 2012, 81(10): 2877-2886. 被引量:1

共引文献178

同被引文献99

引证文献6

二级引证文献24

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部