期刊文献+

基于多尺度图像融合和SIFT特征的水下图像拼接研究 被引量:10

UNDERWATER IMAGE STITCHING BASED ON MULTI-SCALE IMAGE FUSION AND SIFT FEATURE
下载PDF
导出
摘要 充分考虑水下环境和水下成像的特点,将多尺度融合的图像增强算法应用于水下配准算法的预处理图像中,修复深水域偏色严重的图像。用改进SIFT算法进行特征提取,采用自适应阈值法筛选关键点,扩大关键点提取范围;用Canny算法计算关键点的梯度和大小,平滑噪声的同时也可以保留图像更多细节;使用平均Hausdorff距离和BBF最邻近查询法对关键点进行粗匹配,再用RANSAC进行进一步提纯;计算得到变换矩阵后输出最终拼接图像。实验验证了该算法适合水下环境特点,可以提升水下图像配准和拼接的效果和准确率。 Considering the characteristics of underwater environment and underwater imaging,the image enhancement algorithm based on multi-scale fusion was applied to the pre-processing images of underwater registration algorithm to repair the images with severe color deviation in deep water.The improved SIFT algorithm was used to extract features,and the adaptive threshold was adopted to screen key points and expand the range of key points extraction.The Canny algorithm was used to calculate the gradient and size of the key points,and more details of the image could be retained while smoothing the noise.The average Hausdorff distance and the nearest query method of BBF were used to roughly match the key points,and then RANSAC was used for further purification.After calculating the transformation matrix,the final stitching image was output.The experimental results show that this algorithm is suitable for the characteristics of underwater environment,and it can improve the effect and accuracy of underwater image registration and stitching.
作者 王昕平 张森林 刘妹琴 樊臻 Wang Xinping;Zhang Senlin;Liu Meiqin;Fan Zhen(College of Electrical Engineering,Zhejiang University,Hangzhou 310027,Zhejiang,China)
出处 《计算机应用与软件》 北大核心 2021年第5期213-217,230,共6页 Computer Applications and Software
基金 国家自然科学基金-浙江两化融合联合基金项目(U1809212) 浙江省科技厅重点研发计划项目(2018C03030)。
关键词 图像配准 图像拼接 SIFT 图像融合 图像增强 Image registration Image stitching SIFT Image fusion Image enhancement
  • 相关文献

参考文献2

二级参考文献24

  • 1张明,田娜,纪志成.基于适应值欧式距离比的均衡蜂群算法[J].系统仿真学报,2015,27(5):980-989. 被引量:9
  • 2贺彬,王国宇.不同视点海底图像拼接算法[J].微计算机信息,2005,21(12X):152-154. 被引量:6
  • 3Leone A,Distante C,Mastrolia A,et al.A fully automated approach for underwater mosaicking[C] //Proceedings of IEEE Oceans Conference Record.Washington D C:IEEE Computer Society Press.2006:1-6. 被引量:1
  • 4Haywood R M.Acquisition of a micro scale photographic survey using an autonomous submersible[C] //Proceedings of IEEE Oceans Conference Record.Washington D C:IEEE Computer Society Press.1986:1423-1426. 被引量:1
  • 5Marks R L,Rock S M,Lee M J.Real-time video mosaicking of the ocean floor[C] //Proceedings of IEEE International Symposium on Autonomous Underwater Vehicle Technology.Washington D C:IEEE Computer Society Press.1994:21-27. 被引量:1
  • 6Rzhanov Y,Cutter G R,Huff L.Sensor-assisted video mosaicing for seafloor mapping[C] //Proceedings of International Conference on Image Processing.Washington D C:IEEE Computer Society Press.2001,2:411-414. 被引量:1
  • 7Singh H,Howland J,Pizarro O.Advances in large-area photomosaicking underwater[J].IEEE Journal of Oceanic Engineering.2004,29(3):872-886. 被引量:1
  • 8Santos-victor J,Sentiero J.The role of vision for underwater vehicles[C] //Proceedings of IEEE International Symposium on Autonomous Underwater Vehicle Technology.Washington D C:IEEE Computer Society Press.1994:28-35. 被引量:1
  • 9Richmond K.Real-time visual mosaicking and navigation on the sea floor[D].Stamford:Stanford University.2009. 被引量:1
  • 10Lowe G D.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision.2004,60(2):91-110. 被引量:1

共引文献18

同被引文献85

引证文献10

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部