期刊文献+

基于逻辑回归模型的并网调度多目标优化系统 被引量:1

Multi⁃objective optimization system for grid⁃connected scheduling based on logistic regression model
下载PDF
导出
摘要 利用三队列调度算法以及相关特征向量方法进行调度任务所获取权值过于主观,会出现系统调度时间较长的状况,为解决上述问题,提出了基于逻辑回归模型的并网调度多目标优化系统设计。在原有调度系统基础上设计系统结构,选择STM32F103型号嵌入式处理器,直接存取7路通用DMA内存。使用S5422型号A/D转换器,适应多目标调度任务,消除线路板干扰。在CAN总线下,支持总线多主控制器运行。构建逻辑回归模型,计算调度任务发生比,获取权值,依据调度流程,完成并网调度多目标优化系统设计。由实验结果可知,该系统调度路径与标准路径吻合,且单个节点调度时间为2~3 s,为电力并网提供设备支持。 Using the three queue scheduling algorithm and the related eigenvector method to schedule the task,the weight obtained is too subjective,and the system scheduling time will be long.In order to solve the above problems,a multi⁃objective optimization system design of grid connected scheduling based on logical regression model is proposed.Based on the original scheduling system,the system structure is designed.STM32F103 embedded processor is selected to directly access 7 channels of general DMA memory.Model S5422 A/D converter is used to adapt to multi⁃objective scheduling tasks and eliminate circuit board interference.Under the CAN bus,it supports the bus multi master controller operation.Build the logistic regression model,calculate the ratio of scheduling tasks,obtain the weight,and complete the multi⁃objective optimization system design of grid connected scheduling according to the scheduling process.The experimental results show that the scheduling path of the system is consistent with the standard path,and the scheduling time of a single node is 2~3 s,which provides equipment support for power grid connection.
作者 季玉华 窦如婷 冷祥彪 秦高原 JI Yuhua;DOU Ruting;LENG Xiangbiao;QIN Gaoyuan(Electric Power Research Institute,China Southern Power Grid,Guangzhou 510663,China)
出处 《电子设计工程》 2021年第9期98-102,共5页 Electronic Design Engineering
基金 广东省自然科学基金(1614050001136)。
关键词 逻辑回归模型 并网调度 多目标优化 CAN总线 logistic regression model grid connection dispatching multi⁃objective optimization CAN bus
  • 相关文献

参考文献16

二级参考文献210

共引文献364

同被引文献21

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部