期刊文献+

融合手部骨架灰度图的深度神经网络静态手势识别 被引量:5

Deep Neural Network Combined with GHS for Static Gesture Recognition
下载PDF
导出
摘要 针对在无约束环境下静态手势在识别过程中准确率不高的问题,本文提出了一种融合手部骨架灰度图(Grayscale Image of Hand Skeleton,GHS)的深度神经网络,使用手部关键点及其相互关联性构建手部骨架灰度图。网络的输入为GHS图像和RGB图像,主干网络为yolov3,添加了扩展卷积残差模块,在GHS图像和RGB图像进行特征融合后,通过SE模块对每个通道上的特征进行缩放,采用RReLU激活函数来代替Leaky ReLU激活函数。通过手部关键点及其相互间的连接信息增强手部图像特征,增大手势的类间差异,同时降低无约束环境对手势识别的影响,以提高手势识别的准确率。实验结果表明,在Microsoft Kinect&Leap Motion数据集上相比其他方法,本文方法的平均准确率达到最高,为99.68%;在Creative Senz3D数据集上相比其他方法,本文方法平均准确率达到最高,为99.8%。 In order to solve the problem of low accuracy of static gestures in the recognition process under unconstrained environment,this paper proposes a deep neural network combined with Grayscale Image of Hand Skeleton(GHS),using the key points of the hand and their correlations to build a grayscale image of the hand skeleton.The input of the network is GHS image and RGB image,the backbone network is yolov3,and the extended convolution residual module is added.After the feature fusion of the GHS image and the RGB image,the feature on each channel is scaled by the SE module,using RReLU Activation function to replace Leaky ReLU activation function.Through the key points of the hand and the connection information between them,the image features of the hand are enhanced,the difference between gestures is increased,and the influence of the unconstrained environment on gesture recognition is reduced to improve the accuracy of gesture recognition.The experimental results show that compared with other methods on the Microsoft Kinect&Leap Motion data set,the average accuracy rate of the method in this paper reaches the highest,99.68%;on the Creative Senz3 D data set,the average accuracy rate of the method in this paper reaches the highest,99.8%.
作者 章东平 束元 周志洪 ZHANG Dongping;SHU Yuan;ZHU Zhihong(Key Laboratory of Electromagnetic Wave Information Technology and Metrology of Zhejiang Province,College of Information,China Jiliang University,Hangzhou Zhejiang 310018,China;Shanghai Key Laboratory of Integrated Administration Technologies for Information Security,Shanghai 200240,China)
出处 《传感技术学报》 CAS CSCD 北大核心 2021年第2期203-210,共8页 Chinese Journal of Sensors and Actuators
基金 浙江省重点研发计划项目(2020C03104) 上海市信息安全综合管理技术研究重点实验室开放课题(AGK201900X)。
关键词 深度学习 手势识别 手部骨架灰度图 无约束环境 deep learning gesture recognition GHS unconstrained environment
  • 相关文献

参考文献2

二级参考文献24

  • 1高剑,罗志增.支持向量机在肌电信号模式识别中的应用[J].传感技术学报,2007,20(2):366-369. 被引量:11
  • 2Lu Tao. A Motion Control Method of Intelligent Wheelchair Based on Hand Gesture Recognition [C]//2013 IEEE 8th Conference on Industrial Electronics and Applications, 2013 : 957-962. 被引量:1
  • 3Lian Shiguo, Hu Wei, Wang Kai. Automatic User State Recogni- tion for Hand Gesture Based Low-Cost Television Control System [J]. IEEE Transactions on Consumer Electronics, 2014,60( 1 ) : 107-I 15. 被引量:1
  • 4Xie Renqiang, Sun Xia, Xia Xiang, et al. Similarity Matching- Based Extensible Hand Gesture Recognition [J]. IEEE Sensors Journal,2015,15(6) :3475-3483. 被引量:1
  • 5Zhu Chun, Sheng Weihua. Wearable Sensor-Based Hand Gesture and Daily Activity Recognition for Robot-Assisted Living [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A : Sys- tems and Humans, 2011,41 (3) : 569-573. 被引量:1
  • 6Alon Jonathan, Athitsos Vassilis, Yuan Quan, et al. A Unified Framework for Gesture Recognition and Spatiotemporal Gesture Segmentation [J ]. IEEE Transactions on Pattern Analysis and Ma- chine Intelligence ,2009,31(9) : 1685-1699. 被引量:1
  • 7Zhou Shengli, Fei Fei, Zhang Guanglie, et al. 2D Human Gesture Tracking and Recognition by the Fusion of MEMS Inertial and Vi- sion Sensors[J ]. IEEE Sensors Journal, 2014,14(4) : 1160-1170. 被引量:1
  • 8Wang Jeen- Shing, Chuang Fang- Chen. An Accelerometer- Based Digital Pen With a Trajectory Recognition Algorithm for Handwrit- ten Digit and Gesture Recognition [J]. IEEE Transactions on In- dustrial Electronics, 2012,59 (7) : 2998 -3007. 被引量:1
  • 9. Hsu Yu-Liang, Chu Cheng-Ling, Tsai Yi-Ju, et al. An Inertial Pen with Dynamic Time Warping Recognizer for Handwriting and Ges- ture Recognition [ J ]. IEEE Sensors Journal, 2015,15 ( 1 ) : 154-163. 被引量:1
  • 10Zhang Xu, Chen Xiang,Li Yun, et al. A Framework for Hand Ges- ture Recognition Based on Accelerometer and EMG Sensors [J]. IEEE Transactions on Systems, Man and Cybernetics, Part A : Sys- tems and Humans, 2011,41 (6) : 1064-1076. 被引量:1

共引文献28

同被引文献45

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部