摘要
智慧城市就是运用信息通信等技术手段感测、分析城市运行核心系统的各项关键信息,需要对城市安全、常见案件等做出及时有效的智能响应.为了提高城市常见案件处理的有效性和精确度,本次研究提出了一种城市常见违规事件的自动识别算法.利用改进的卷积神经网络对图像进行特征提取,使用BP神经网络作为评价网络.在VOC数据集上与YOLO、SDD等算法的性能进行对比.结果表明,改进的卷积神经网络的检测mAP值可达76.5%,对各种类型的案件识别的准确率均在72%以上,识别“乱涂乱画张贴广告”类型图像的准确率达到了83.4%.此次研究构建的智慧城市案件图像识别技术能够有效提高案件处理效率、节约人力物力资源,可用于协助城管监察行政执法.
Smart cities depend on information and communication technology to sense and analyze the key information in the core system of urban operation.It needs to make timely and effective intelligent response to urban security threats and common cases.In order to improve the effectiveness and accuracy of identifying common urban cases,this study proposes an automatic identification algorithm for common urban violations.The improved convolution neural network extracts image features,and BP neural network is used for evaluation.On the VOC data set,the algorithm is compared with YOLO and SSD in performance.The results show that the mAP of the improved convolutional neural network can reach 76.5%,and the accuracy of identifying various types of cases is more than 72%,and the accuracy of identifying“graffiti and posted advertisement”is 83.4%.The image recognition technology of cases in a smart city developed in this study can enhance the efficiency of case processing,save human and material resources,and thus can be used to assist urban management,supervision,and administrative law enforcement.
作者
郭磊
李进强
党磊
GUO Lei;LI Jin-Qiang;DANG Lei(Zhengyuan Geographic Information Group Co.Ltd.,Beijing 101300,China)
出处
《计算机系统应用》
2021年第5期241-246,共6页
Computer Systems & Applications
关键词
目标检测算法
卷积神经网络
BP神经网络
案件管理
识别技术
object detection algorithm
Convolution Neural Network(CNN)
BP neural network
case management
recognition technology