期刊文献+

基于多时间尺度的电动汽车充电过程故障在线预警方法 被引量:1

On-Line Early Warning Method for Electric Vehicle Charging Process Faults Based on Multiple Time Scales
下载PDF
导出
摘要 为了保障新能源车辆的安全、平稳运行,并且缓解环境危机,加速开发和推广应用新能源车辆,分析单体电池基本性能,为了准确清晰的表征电池电压的变化趋势,采用“电压差归一化曲线”来进行分析动力电池组安全特性,以短期和中长期不同时间尺度为依据制定电动汽车充电过程故障在线预警控制策略,主要研究了电池充电温升因素影响下的中长期充电预警控制策略,并建立目标函数,利用遗传算法进行优化控制,最后利用充电桩监控平台提供的充电状态信息数据,对所提出的基于电池模型的充电设施充电数据在线预警进行了验证. In order to ensure the safe and smooth operation of new energy vehicles,accelerate their development and promotion,and alleviate the environmental crisis,we adopt a“normalized voltage difference curve”to analyze the safety features of power battery packs.Furthermore,we formulate the control strategies of online early warning about faults in the charging process of electric vehicles on the short-term and mid-long-term scales.Thus,the basic performance of single batteries is analyzed and the trend in battery voltage can be accurately and clearly characterized.In this study,we mainly investigate the early warning control strategies of mid-long-term charging affected by the temperature rise in battery charging.Then,an objective function is established and the genetic algorithm is used for optimal control.Finally,the data about the charging status provided by the charging-pile monitoring platform verify the proposed online early warning of the charging data based on the battery model.
作者 芮光辉 张明浩 魏廷云 汪映辉 石进永 RUI Guang-Hui;ZHANG Ming-Hao;WEI Ting-Yun;WANG Ying-Hui;SHI Jin-Yong(Xining Electric Vehicle Service Branch,Qinghai Electric Power Company,State Grid,Xining 810008,China;Guodian NARI Nanjing Control System Co.Ltd.,Nanjing 210023,China)
出处 《计算机系统应用》 2021年第5期143-149,共7页 Computer Systems & Applications
基金 青海省电力公司科技项目(5228011900RQ)。
关键词 电动汽车 在线预警 多时间尺度 优化运行 协同控制 electric vehicle on-line warning multiple time scales optimized operation collaborative control
  • 相关文献

参考文献10

二级参考文献73

  • 1Tingchao JIN,Ming ZHOU,Gengyin LI.Universal generating function based probabilistic production simulation for wind power integrated power systems[J].Journal of Modern Power Systems and Clean Energy,2017,5(1):134-141. 被引量:8
  • 2胡士强,敬忠良.粒子滤波算法综述[J].控制与决策,2005,20(4):361-365. 被引量:293
  • 3陈召洪.“锂想国”探秘:新能源汽车带来的春之律动[R].万联证券新能源研究小组动力锂电池深度研究报告.2010,09. 被引量:2
  • 4SAHA B, GOEBEL K, CHRISTOPHERSEN J.Comparison of prognostic algorithms for estimating remaining useful life of batteries[J].Transactions of the Institute of Measurement and Control, 2009,31 (3-4) : 293-308. 被引量:1
  • 5BLANKE H, BOHLEN O, BULLER S, et al.Impedance measurements on lead-acidbatteries for state-of-charge, state-of-healthand cranking capability prognosis in elec- tricand hybrid electric vehicles[J].Journal of Power Sources, 2005 , 144(2) : 418-25. 被引量:1
  • 6BHANGU B S, BENTLEY P, STONE D A, et al.Nonlinear observersfor predicting state-of-charge and state-of-health of lead-acid batteries for hybridelectricvehicles [J].IEEE Transactions onVehicular Technology, 2005,54 (3) : 783-94. 被引量:1
  • 7KOZLOWSKI J D.Electrochemical cellprognostics using online impedancemeasurements and model-based data fusiontechniques[C].Aerospace Conference 2003,IEEE Proceedings, 2003 , 7 : 3257-3270. 被引量:1
  • 8DALAL M ,MA J,HE D.Lithium-ion battery life prognostic health management system using particle filtering framework[J]. Proceedings of the Institution of Mechanical Engineers, Part O : Journal of Risk and Reliability, 2011 , 225 ( 1 ) : 81 - 90. 被引量:1
  • 9GAO L, LIU S,DOUGAL R A.Dynamic lithium-ion batterymodel forsystem simulation[J].IEEE Transactions on Com- ponents and Packaging Technologies, 2002,25(3) : 495-505. 被引量:1
  • 10Luo Jianhui, NAMBURU M, PATFIPATI K, et al. Model- based Prognostic Techniques[C].AUTOTESTCON 2003: 330-340. 被引量:1

共引文献50

同被引文献4

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部