期刊文献+

工业丝状真菌基因组编辑技术研究进展 被引量:2

Research progress of genome editing technologies for industrial filamentous fungi
下载PDF
导出
摘要 丝状真菌(filamentous fungi)是广泛存在于自然界中的一类多细胞真核微生物,是酶制剂、有机酸、抗生素的核心生产体系,在生物技术中发挥着非常重要的作用。由于丝状真菌的生长发育较为复杂,其遗传体系和基因组编辑技术发展相对较慢,妨碍了丝状真菌基础研究和开发利用的快速发展。近年来,核酸酶介导的基因组编辑技术已经发展成为一种功能强大的基因组编辑工具,在生物技术领域的应用得到广泛关注,其中RNA介导的CRISPR系统(clustered regularly interspaced short palindromic repeats)已经成为新一代基因组编辑技术体系。文章将对目前使用最为广泛的3种基因编辑系统,包括CRISPR-Cas技术的发展历程进行概述,对CRISPR-Cas技术在丝状真菌基因组编辑中的研发进行系统介绍,包括在工业丝状真菌中的研发应用,例如鉴定次级代谢产物的关键基因并提高次级代谢物的生产能力、将外源基因定点整合到基因组上从而提高异源蛋白的表达、遗传重构蛋白分泌途径提高工业酶的产量等,最后对CRISPR-Cas基因组编辑技术及其衍生系统在丝状真菌的真菌基因功能研究、代谢途径重构、精确表达调控、蛋白定向进化以及高性能底盘构建等方面进行了展望。 Filamentous fungi,which are a large and diverse group of multicellular eukaryotic microorganisms existing in nature universally,have played pivotal roles in biotechnology as the prominent producers of enzymes,organic acids and antibiotics.Filamentous fungi are also important decomposers that contribute to the biological carbon cycle of plant biomass.Genetic engineering is a powerful approach for researchers not only to elucidate the gene function in filamentous fungi,but also to improve their production levels and minimize unwanted by-product formation.However,the efficiency of homologous integration in filamentous fungi is very low using classical genetic approaches.Due to the complicated growth and lifestyle of filamentous fungi,the development of genetic tools and gene editing is relatively slow,which hinders the basic research and biotechnological development of filamentous fungi.In recent years,genome editing technologies based on programmable nucleases have been developed as the powerful gene engineering tools in a wide variety of organisms.The most rapidly developed and wildly used technology is the class of RNA-guided Cas9 nuclease known as the adaptive immune system CRISPR(clustered regularly interspaced short palindromic repeats).The Cas9-sgRNA complex binds to the corresponding target site of the protospacer in a genome,and the specifically induces double-strand breaks.These breaks can be used as a basis for site-specific mutagenesis mediated by non-homologous end-joining or for the introduction of precise mutation or integration via homology-directed repair.CRISPR-Cas systems have recently enabled a wide range of applications for genome editing in many organisms.Remarkably,and in just the past few years,the CRISPR-Cas9 system has emerged as a more efficient strategy for gene editing in filamentous fungi.In this review,we describe the research progress of three most widely used genome editing systems,including the development of CRISPR-Cas technology and its applications in filamentous fungi,especially
作者 刘倩 李金根 张晨阳 李芳雅 田朝光 LIU Qian;LI Jingen;ZHANG Chenyang;LI Fangya;TIAN Chaoguang(Key Laboratory of Systems Microbial Biotechnology,Tianjin Institute of Industrial Biotechnology,Chinese Academy of Sciences,Tianjin 300308,China;National Technology Innovation Center of Synthetic Biology,Tianjin 300308,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处 《合成生物学》 CSCD 2021年第2期256-273,共18页 Synthetic Biology Journal
基金 国家重点研发计划“合成生物学”重点专项(2018FYA0900500) 天津市合成生物技术创新能力提升行动项目(TSBICIP-KJGG-006) 国家自然科学基金项目(31972878,31771386和31972879) 中国科学院青年创新促进会项目(2019180和2020183)。
关键词 基因组编辑技术 核酸酶 CRISPR-Cas系统 丝状真菌 工业丝状真菌 genome editing nucleases CRISPR-Cas system filamentous fungi industrial filamentous fungi
  • 相关文献

参考文献3

二级参考文献149

  • 1Wang M, Wu W, Wu W, et al. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways. Nucleic Acids Res 2006; 34:6170-6182. 被引量:1
  • 2Daley JM, Palmbos PL, Wu D, Wilson TE. Nonhomologous end joining in yeast. Annu Rev Genet 2005; 39:431-451. 被引量:1
  • 3Lees-Miller SP, Meek K. Repair of DNA double strand breaks by non-homologous end joining. Biochimie 2003; 85:1161-1173. 被引量:1
  • 4Burma S, Chen BE Chen DJ. Role of non-homologous end joining (NHEJ) in maintaining genomic integrity. DNA Repair (AmsO 2006; 5:1042-1048. 被引量:1
  • 5Rouse J, Jackson SP. Interfaces between the detection, signaling, and repair of DNA damage. Science 2002; 297:547-551. 被引量:1
  • 6Strathem JN, Shafer BK, McGill CB. DNA synthesis errors associated with double-strand break repair. Genetics 1995; 140:965-972. 被引量:1
  • 7NickoloffJA. Recombination: mechanisms and roles in tumorigenesis. In: Bertino JR, ed, Encyclopedia of Cancer. 2nd Edition. San Diego, USA- Elsevier Science, 2002:49-59. 被引量:1
  • 8Krogh BO, Symington LS. Recombination proteins in yeast. Annu Rev Genet 2004; 38:233-271. 被引量:1
  • 9West SC. Molecular views of recombination proteins and their control. Nat Rev Mol Cell Biol2003; 4:435-445. 被引量:1
  • 10Champion MD, Hawley RS. Playing for half the deck: the molecular biology of meiosis. Nat Cell Biol 2002; 4(Suppl): s50-s56. 被引量:1

共引文献124

同被引文献42

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部