摘要
该文主要研究了一类具有双疾病的随机SIQS传染病模型,通过构造Liapunov函数,运用相关的随机分析学理论、伊藤公式及强大数定理等理论知识证明了该模型全局正解存在唯一,并给出了疾病灭绝与持久的条件.此外,证明了环境噪声对于疾病的暴发具有抑制作用,最后通过数值模拟验证了结论的正确性.
In this paper,we mainly study a kind of stochastic SIQS epidemic model with two diseases,by constructing Liapunov function,using the relevant stochastic analysis theory,Ito formula and strong law of large numbers,we prove the existence and uniqueness of the global positive solution of the model and give the conditions for the extinction and persistence of infectious diseases.Finally,the correctness of the conclusion is verified directly by numerical simulation.
作者
阳开荣
韦煜明
YANG Kai-rong;WEI Yu-ming(College of Mathematics and Statistics,Guangxi Normal University,Guilin 541006,China)
出处
《南宁师范大学学报(自然科学版)》
2021年第1期15-25,共11页
Journal of Nanning Normal University:Natural Science Edition
基金
国家自然科学基金项目(11961074)。
关键词
随机传染病模型
双疾病
灭绝性
持久性
stochastic epidemic model
double disease
extinction
persistence