期刊文献+

变压器在线实时故障诊断系统的研发 被引量:7

Development of Online Real-Time Fault Diagnosis System for Transformers
下载PDF
导出
摘要 变压器是电力系统的一个重要设备。为了确保变压器安全运行,杜绝事故的发生,对变压器故障进行诊断就显得尤为重要。笔者提出了一种变压器在线实时故障诊断系统,设计了硬件电路,利用智能型气体传感器和物联网技术建立了数据传输网络,实现对变压器内部参数的智能采集;阐述了系统建模的理论和方法,利用贝叶斯、KNN和决策树等模型对变压器故障进行分类、预测,并比较三种模型的性能。结果表明:KNN与决策树模型对变压器故障分类、预测的正确率达到100%;贝叶斯模型分类、预测的正确率比较低,仅有84%。变压器在线实时故障诊断系统能够安全、稳定地运行,在变压器故障诊断中应用KNN和决策树模型是可行的,可供变压器在线监测和故障诊断参考。 Transformer is an important equipment of power system.In order to ensure the safe operation of transformer and prevent the occurrence of accidents,it is very important to diagnose the transformer fault.In this paper,an online real-time fault diagnosis system for transformer is proposed.The hardware circuit is designed,and the data transmission network is established by using intelligent gas sensors and internet of things technology to realize the intelligent acquisition of internal parameters of the transformer.The theory and method of system modeling are expounded.Bayesian,KNN and decision tree models are used to classify and predict transformer faults,and the performance of the three models is compared.The results show that the accuracy of classification and prediction of transformer faults by KNN and decision tree models reaches 100%;The accuracy of classification and prediction using Bayesian model is relatively low,only 84%.The transformer online real-time fault diagnosis system can operate safely and stably.It is feasible to apply KNN and decision tree models in transformer fault diagnosis,which can provide reference for transformer online monitoring and fault diagnosis.
作者 刘裕舸 LIU Yuge(Liuzhou Railway Vocational Technical College,Liuzhou,Guangxi,545616)
出处 《红水河》 2021年第2期90-95,共6页 Hongshui River
关键词 变压器 在线实时系统 故障诊断 贝叶斯 K近邻 决策树模型 transformer online real-time system fault diagnosis Bayesian K-nearest neighbor decision tree model
  • 相关文献

参考文献6

二级参考文献62

  • 1熊珺洁,屈玉贵,赵保华,刘桂英.对IEEE802.11协议多跳传输时的时延性能改进[J].微型机与应用,2005,24(12):40-44. 被引量:1
  • 2朱庆豪,曾蕾.基于GPRS的远程自动抄表系统的设计[J].电测与仪表,2006,43(7):31-34. 被引量:23
  • 3谢坡岸.振动分析法在电力变压器绕组状态监测中的应用研究[D].上海交通大学2008 被引量:2
  • 4赵振涛.电力系统间谐波源的检测与识别[D].山东大学2013 被引量:1
  • 5陆瑾.应用机械振动法对变压器绕组状态进行在线测试的研究[D].上海交通大学2008 被引量:1
  • 6Belén García,Juan Carlos Burgos,ángel Alonso.Winding deformations detection in power transformers by tank vibrations monitoring[J]. Electric Power Systems Research . 2004 (1) 被引量:1
  • 7M.A. Sanz-Bobi,A. Garcia-Cerrada,R. Palacios,J. Villar,J. Rolan,B. Moran.Experienceslearned from the on-line internal monitoring of the behaviour of a transformer. Proceedings of the IEEE International Electric Machines and Drives Conference Record . 1997 被引量:1
  • 8Zalya Berler,Alexander Golubev,et al.Vibro-acoustic method of transformer clamping pressure monitoring. Conference record of the 2000 IEEE international symposium on electrical insulation . 2000 被引量:1
  • 9CROCE D. Modeling wireless mesh networks [ D ]. Institution Eurecom, Sophia-Antipolis, France, 2006. 被引量:1
  • 10SEO C E, LEONARDO E J, CARDIERI P, et al. Performance of IEEE 802. 11 in wireless mesh networks [ C ]//2005 SBMO/ IEEE MTT-S International Conference on Microwave and Optoe- lectronics, IEEE, 2005 : 363 - 367. 被引量:1

共引文献435

同被引文献55

引证文献7

二级引证文献21

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部