期刊文献+

一类HIV病毒动力学模型的全局稳定性与周期解

Global Stability and Periodic Solutions for a Class of Generalized Viral Dynamical Model of HIV
原文传递
导出
摘要 建立了一类较广泛的HIV感染CD4+T细胞病毒动力学模型,给出了一个感染细胞在其整个感染期内产生的病毒的平均数(基本再生数)R0的表达式,运用Lyapunov原理和Routh-Hurwitz判据得到了该模型的未感染平衡点与感染平衡点的存在性与稳定性条件.同时也得到了模型存在轨道渐近稳定周期解和系统持续生存的条件,并通过数值模拟验证了所得到的结果. This paper formulates a class of generalized viral dynamical model for HIV infection of CD4+T cells.The explicit expression of the basic reproduction number R0(it represents the average number of secondary infections caused by a single primary actively infected T cell introduced into a pool of susceptible T cells during its entire infection period) is obtained.The conditions for the existence and stability of the uninfected and infected equilibria are given.The existence conditions of an orbitally asymptotically stable periodic solution are also obtained by using Lyapunov function,additive compound matrix theory and three-dimensional competitive system theory.The theoretical results obtained in this paper are supported by numerical simulation.
作者 邵莉 李学志 SHAO Li;LI Xue-zhi(Department of Mathematics and Computer Science,Xinyang Vocational and Technical College,Xinyang 464000,China;College of Mathematics and Information Science,Henan Normal University,Xinxiang 453007,China)
出处 《数学的实践与认识》 2021年第6期120-130,共11页 Mathematics in Practice and Theory
关键词 HIV病毒动力学模型 感染平衡点 全局稳定 一致持续 周期解 HIV viral dynamical model infected equilibrium global stability uniform persistence periodic solution
  • 相关文献

参考文献3

二级参考文献45

  • 1Anderson R M. Mathematical and Statistical Studies of the Epidemiology of HIV. AIDS, 1990, 4: 107-121 被引量:1
  • 2Anderson R M, MAy R M. Complex Dynamical Behavior in the Interaction Between HIV and the Immune System. In: A.Glodbeter(Ed.), Cell signalling: From Experiment to Theoretical Models, Academic Press, New York, 1989, 335-348 被引量:1
  • 3Bailey J J, Fletcher J E, Chuck E T, Shrager R I. Akinetic Model of CD4^+ Lymphocytes with the Human Immunodeficiency Virus (HIV). Biosystems, 1992, 26:177-192 被引量:1
  • 4Bonhoeffer S, May R M, Shaw G M, Nowak M A. Virus Dynamics and Drug Therapy. Proc. Nat. Acad. Sci. USA, 1997, 94:6971-6985 被引量:1
  • 5De Boer R J, Perelson A S. Target Cell Limited and Immune Control Models of HIV Infection: a Comparison. J. Theor. Biol., 1998, 190:201-214 被引量:1
  • 6Hraba T, Dolezal J, Celikovsky S. Model-based Analysis of CD4^+ Lymphocyte Dynamics in HIV Infected Individuals. Immunology, 1990, 181:108 122 被引量:1
  • 7Intrator N, Decampo G P, Cooper L N. Analysis of Immune System Retrovirus Equations. In: A.S.(Ed.), Theoretical Immunology,2, Addison-Wesley, Redwood city, CA,1988, 85-101 被引量:1
  • 8Kirschner D E, Perelson A S. A Model for the Immune System Response to HIV: AZT Treatment Studies. In: O. Arino, D.Axelrod, M.Kimmel, M.Langlais (Eds.), Mathematical Population Dynamics: Analysis of Heterogeneity, Vol.1, Theory of Epidemics, Wuerz, Winnipeg, Canada, 1995, 295-311 被引量:1
  • 9Kirschner D E, Lemhart S, Serbin S. Optimal Control of the Chemotherapy of HIV. J. Math. Biol., 1997, 35:775-792 被引量:1
  • 10Kirscher D E, Webb G F. A Model for the Treatment Strategy in the Chemotherapy of AIDS. Bull. Math. Biol., 1996, 58:367-390 被引量:1

共引文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部