摘要
设τ是遗传挠理论,提出了广义τ-奇异和τ-非奇异的概念.称模M中的元素m是广义τ-奇异的,如果其右零化子annr(m)是环R的广义τ-本质右理想.称模M是广义τ-奇异(或广义τ-非奇异)的,如果其所有元素都是广义τ-奇异的(或唯一的广义τ-奇异元是0).讨论了模M的广义τ-奇异子模Zτ(M)的若干性质,给出了N■τM与M/N是广义τ-奇异的等价条件,证明了模M是广义τ-非奇异的,当且仅当对任意广义τ-奇异模N,Hom(N,M)=0.
In this paper,the concept of generalizedτ-(non)singularity is introduced.An element m in a module M is called generalizedτ-singular if its right annihilator is a generalizedτ-essential right ideal in R.The module M is generalizedτ-singular(resp.generalizedτ-nonsingular)if all its elemenets are generalizedτ-singular(resp.if the only generalizedτ-singular element is 0).Some properties of Zτ(M)which is a generalizedτ-singular submudules of M are discussed,the equivalent condition of N■τM and M/N being generalizedτ-singular is given,it is proved that a module M is generalizedτ-nonsingular if and only if Hom(N,M)=0 for all generalizedτ-singular modules N.
作者
李煜彦
LI Yuyan(Department of Mathematics,Longnan Teachers College,Longnan Gansu 742500)
出处
《首都师范大学学报(自然科学版)》
2021年第2期7-9,共3页
Journal of Capital Normal University:Natural Science Edition
基金
甘肃省高等学校创新能力提升项目(2019B-224)
甘肃省高等学校科研项目(2018A-269)。
关键词
广义τ-奇异
广义τ-非奇异
广义τ-本质子模
generalizedτ-singular
generalizedτ-nonsingular
generalizedτ-essential submodules