期刊文献+

振动监测技术在齿轮裂纹故障诊断中的应用 被引量:4

Application of Vibration Monitoring Technology in Fault Diagnosis of Gear Crack
下载PDF
导出
摘要 在对一级齿轮箱的振动信号进行快速傅里叶变换和小波包变换的基础上,提取各个小波包系数的峭度和偏态,并选择分辨率较高的小波包系数的峭度和偏态作为齿轮裂纹的故障特征。最后通过基于粒子群优化算法(Particle swarm optimization,PSO)的支持向量机(Support vector machine,SVM)模型进行齿轮裂纹故障特征分类,其中,PSO主要用来优化SVM模型的核函数的关键参数,避免出现局部最优和过拟合的问题。计算结果表明,和其它算法相比,提出的齿轮裂纹故障诊断方法在分类精度和计算效率方面具有综合优势。 On the basis of fast Fourier transform and wavelet packet transform,the kurtosis and skewness of each wavelet packet coefficient are extracted,and the kurtosis and skewness of wavelet packet coefficient with higher resolution are selected as fault features of gear cracks.Finally,the support vector machine(SVM)model based on particle swarm optimization(PSO)is used to classify the fault features of gear cracks.PSO is mainly used to optimize the key parameters of the kernel function of SVM model,avoiding the problems of local optimization and over fitting.The results show that,compared with other algorithms,the method proposed in this paper has comprehensive advantages in classification accuracy and calculation efficiency.
作者 王二化 刘忠杰 刘颉 WANG Er-hua;LIU Zhong-jie;LIU Jie(Changzhou City Lab of Intelligent Technology for Advanced Manufacturing Equipment,Changzhou College of Information Technology,Changzhou Jiangsu 213164,China;School of Hydropower and Information Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《组合机床与自动化加工技术》 北大核心 2021年第4期126-129,共4页 Modular Machine Tool & Automatic Manufacturing Technique
基金 常州市高端制造装备智能化技术重点实验室(CM20183004) 江苏省青蓝工程中青年学术带头人,2019年江苏省高等教育教改研究课题““双高”背景下高水平专业群建设的理论与实践研究”(2019JSJG431) 2020年江苏高校“青蓝工程”优秀青年骨干教师项目资助,常州信息职业技术学院“1+1+1”协同培育工程建设项目。
关键词 齿轮裂纹 故障诊断 小波包变换 支持向量机 粒子群优化 gear crack fault diagnosis wavelet packet transform support vector machine particle swarm optimization
  • 相关文献

参考文献9

二级参考文献64

  • 1瞿金秀,张周锁,何正嘉.基于多小波包和邻域粗糙集的故障诊断模型[J].振动.测试与诊断,2013,33(S1):137-140. 被引量:8
  • 2张辉,王淑娟,张青森,翟国富.基于小波包变换的滚动轴承故障诊断方法的研究[J].振动与冲击,2004,23(4):127-130. 被引量:36
  • 3丁华,王秀坤,孙焘.基于PSO改进决策树算法的研究[J].小型微型计算机系统,2005,26(7):1206-1210. 被引量:4
  • 4熊诗波,黄长艺.机械工程测试基础[M].北京:机械工业出版社,2006:188-211. 被引量:1
  • 5Olivier C, Vladimir V, Olivier B, et al. Choosing multiple parameter for support vector machines[J]. Machine Learning, 2002,46 : 131-159. 被引量:1
  • 6Cheong S M, Oh S H, Lee S Y. Support vector ma- chines with binary tree architecture for multi-class classification[J]. Neural Information Processing-Let- ters and Reviews, 2004,2(3):47-51. 被引量:1
  • 7Randall R B,Antoni J.Rolling element bearing diagnostics-atutorial[J].Mechanical Systems and Signal Processing,2011,25(2):485-520. 被引量:1
  • 8Goldberger J,Roweis S,Hinton G,et al.Neighbourhoodcomponents analysis[C].Proc.of Conference on Neural Information Processing Systems,[S.I.]:MIT Press,2005. 被引量:1
  • 9Singh-Miller N,Collins M,Hazen T J.Dimensionalityreduction for speech recognition using neighborhoodcomponents analysis[J].Proceedings of the Annual Conference of the International Speech Communication Association,Interspeech,2007,2:1397-1400. 被引量:1
  • 10Nguyen H V,Bai L.Face verification using indirectneighbourhood components analysis[J].Lecture Notes inComputer Science(Including Subseries Lecture Notes inArtificial Intelligence and Lecture Notes in Bioinformatics),2010,6454 LNCS(PART 2):637-646. 被引量:1

共引文献77

同被引文献48

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部