期刊文献+

基于改进神经网络的静态软件缺陷自动分配方法

Static Software Defect Automatic Allocation Method Based on Improved Neural Network
下载PDF
导出
摘要 针对软件缺陷分配存在的问题,笔者设计了基于改进神经网络的静态软件缺陷自动分配方法,首先利用隐含语义分析方法对缺陷数据进行分解,然后利用初始标签对改进神经网络进行训练,最后采用训练后的神经网络对数据进行标注,将标注后的缺陷数据利用one hot向量分配给对应的修复人员,完成自动分配。实验结果证明,设计方法的分配准确率优于传统方法,证明设计方法具有可行性。 Aiming at the problems of software defect allocation,the author designed a static software defect automatic allocation method based on improved neural network.First,the defect data is decomposed by the implicit semantic analysis method,then the improved neural network is trained by the initial label,and finally the training is used.The latter neural network annotates the data,and uses the one hot vector to assign the annotated defect data to the corresponding repair personnel to complete the automatic assignment.The experimental results prove that the allocation accuracy of the design method is better than that of the traditional method,which proves the feasibility of the design method.
作者 马辉 MA Hui(Henan Vocational College of Quality Engineering,Pingdingshan Henan 467000,China)
出处 《信息与电脑》 2021年第4期68-70,共3页 Information & Computer
关键词 分配准确率 自动分配 隐含语义分析 神经网络 allocation accuracy automatic allocation implied semantic analysis neural networks
  • 相关文献

参考文献17

二级参考文献79

  • 1吴迪,赵鹤鸣,陶智.基于联想记忆神经网络模型的BP算法[J].微电子学与计算机,2005,22(5):151-154. 被引量:5
  • 2MENZIES T, GREENWALD J, FRANK A. Data mining static code attributes to learn defect predictors [ J ]. IEEE Transac- tion on Software Engineering,2007,32 ( 11 ) : 2 - 13. 被引量:1
  • 3LESSMANN S, BAESENS B, MUES C, et al. Benchmarking classification models for software defect prediction: a pro- posed framework and novel findings [ J ]. IEEE Transactions on Software Engineering, 2008,4 ( 34 ) :485 - 496. 被引量:1
  • 4KHOSHGOFFAAR T M, PANDYA A S, LANNING D L. Ap- plication of neural networks for predicting defects [ J]. An- nals of Software Engineering, 1995,1 ( 1 ) : 141 - 154. 被引量:1
  • 5MENZIES T, DISTEFANO J, ORREGO A, et al. Assessing predictors of software defects [ C ]. In Proceedings of Work- shop on Predictive Software Models ,2004. 被引量:1
  • 6PORTER A, SELBY R W. Evaluating techniques for genera- ting metric - based classification trees [ J ]. Journal of Sys- tems and Software, 1997,12 (2) : 166 - 173. 被引量:1
  • 7BOEHM B W, PAPACCIO P N. Understanding and control- ling software costs [ J ]. IEEE Transactions on Software Engi- neering, 1988,14(10) : 1462 - 1477. 被引量:1
  • 8BOEHM B W. Industrial software metrics top 10 list [J]. IEEE Software, 1987,4 (5) : 84 - 85. 被引量:1
  • 9MALOOF M A. Learning when data sets are imbalanced and when costs are unequal and unknown [ C ]. Washington, DC : In Working Notes of the ICML'03 Workshop on Learning from Imbatanced Data Sets ,2003,8:328 -334. 被引量:1
  • 10ZHOU Z H, LIU X Y. Training cost - sensitive neural net- works with methods addressing the class imbalance problem [ J]. IEEE Transactions on Knowledge and Data Engineer- ing,2006,18( 1 ) :63 -77. 被引量:1

共引文献96

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部