期刊文献+

基于图卷积网络的非参数化三维人体重建 被引量:1

Non-parametric 3D human body reconstruction based on Graph Convolutional Network
下载PDF
导出
摘要 为了提高三维人体重建精度并使得重建结果更加可控,设计了一种基于图卷积的三维人体重建方法。该方法不依赖任何现有的参数化人体模型,以人体掩码图像和少量的人体测量尺寸作为输入,借助图卷积神经网络直接回归三维人体网格模型的顶点坐标,其本质是利用图卷积算子对内置的模板人体进行变形。大量实验证明,通过显式地融入人体测量数据并辅以相应的损失函数,重建精度大幅提高,重建人体的各项测量尺寸误差均小于1 cm,且重建效果优于其他相关方法。 A non-parametric 3D human body reconstruction method based on Graph Convolutional Network(GCN),which does not depend on any existing parametric human body model,was proposed in this paper to improve the precision of reconstruction and make the procedure more controllable.The proposed method only required mask image(s)and a small of anthropometric measurements of a body shape as input and regresses the 3D coordinates as output directly,whose essence was to employ the graph convolutional operator to deform the built-in body template.Experimental results demonstrate that by explicitly integrating the anthropometric sizes into the network with a properly designed loss function,the accuracy of the reconstruction is greatly improved,all anthropometric errors are less than 1 cm,and the reconstruction result is better than other related methods as well.
作者 谢昊洋 钟跃崎 XIE Haoyang;ZHONG Yueqi(College of Information Engineering,North China University of Water Resources and Electric Power,Zhengzhou,Henan 450046,China;College of Textiles,Donghua University,Shanghai 201620,China;Key Laboratory of Textile Science&Technology,Ministry of Education,Donghua University,Shanghai 201620,China)
出处 《毛纺科技》 CAS 北大核心 2021年第4期18-24,共7页 Wool Textile Journal
关键词 三维人体 重建 图卷积网络 非参数化建模 three-dimensional human body reconstruction Graph Convolutional Network nonparametric modeling
  • 相关文献

参考文献1

二级参考文献4

共引文献14

同被引文献17

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部