期刊文献+

一种多重冗余的工业物联网智能产线安全通信模型设计 被引量:11

Design of a Multi-redundant Secure Communication Model for Intelligent Production Line of Industrial Internet of Things
下载PDF
导出
摘要 工业物联网传统的单路传输方式无法有效保证信息传递的机密性与完整性,在通信过程中容易发生信息传输错误进而产生安全风险.本文针对工业物联网环境下智能化生产线设备间感知信息的安全通信需求,构建了一种多重冗余的工业物联网智能产线安全通信模型,提出了一种工业物联网辅助路径多重冗余传输方法,有效防止因通信节点失效而造成数据传输失败,降低了初始通信数据被整体捕获的概率,提高了通信的安全性.此外,针对安全通信模型由于特殊因素造成通信数据周期性丢失的特殊情况,本文进一步提出了一种智能产线通信缺失数据预测方法.该方法对于25个周期温度预测目标的多周期预测结果误差控制在0.15℃之内,在安全通信模型失效的特殊情况下有效预测填充了连续周期缺失通信数据,满足了工业物联网智能产线对于通信数据的完整性要求. The traditional one-way transmission method of the Industrial Internet of Things(IIoT) cannot guarantee the confidentiality and integrity of information transmission effectively.In the communication process,information transmission errors are prone to occur,which may cause security risks.Aiming at the security communication requirements of perception information between intelligent production line devices in the IIoT environment,this paper constructs a multi-redundant secure communication model for intelligent production line of IIoT,and proposes a multi-redundant transmission method for auxiliary path of IIoT.This method can prevent data transmission failure effectively caused by the failure of wireless communication nodes in intelligent production lines,reduce the probability of data packets being intercepted by malicious nodes,and enhance the security of communication.In addition,aiming at the special situation that multi-redundant secure communication model fails periodically due to the special factors,this paper propose a method for predicting missing data in intelligent production lines communication further.In this method,the error of multi-cycle prediction results for 25 cycles temperature prediction targets is controlled within 0.15℃.In the special situation of failure of secure communication model,it can predict and fill in the missing communication data of continuous cycle effectively,which meets the integrity requirements of communication data for intelligent production line of IIoT.
作者 李明时 马跃 尹震宇 李成蒙 柴安颖 廉梦佳 LI Ming-shi;MA Yue;YIN Zhen-yu;LI Cheng-meng;CHAI AN-ying;LIAN Meng-jia(University of Chinese Academy of Sciences,Beijing 100049,China;Shenyang Institute of Computing Technology,Chinese Academy of Sciences,Shenyang 110168,China)
出处 《小型微型计算机系统》 CSCD 北大核心 2021年第3期621-626,共6页 Journal of Chinese Computer Systems
基金 国家重点研发计划项目(2017YFE0125300)资助 辽宁省“兴辽英才计划”项目(XLYC1807043)资助。
关键词 工业物联网 智能产线 多重冗余 安全通信 数据填充 industrial Internet of things intelligent production line multi-redundant secure communication data filling
  • 相关文献

参考文献7

二级参考文献66

  • 1张莉,李金宝.无线传感器网络中基于多路径的可靠路由协议研究[J].计算机研究与发展,2011,48(S2):171-175. 被引量:9
  • 2曹尔强,张沂,曹晔,潘继宏.“软件黑盒子”文件加锁和加密的一个方法[J].吉林大学学报(信息科学版),1991,17(3):11-14. 被引量:5
  • 3李滨.基于特殊访问权限的差分秘密共享方案[J].四川大学学报(自然科学版),2006,43(1):78-83. 被引量:20
  • 4BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36. 被引量:1
  • 5BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127. 被引量:1
  • 6HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554. 被引量:1
  • 7BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160. 被引量:1
  • 8LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324. 被引量:1
  • 9VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103. 被引量:1
  • 10VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408. 被引量:1

共引文献764

同被引文献95

引证文献11

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部