摘要
目的基于标本病理切片数据,建立延髓-上颈髓三维实体模型,通过有限元分析获得延髓-上颈髓受齿状突压迫情况下应力、应变水平,为临床研究提供参考。方法运用Mimics对切片数据进行处理,建立点云模型;运用Solid Works对点云模型进行定位、编辑、优化,建立三维实体模型;运用Hyper Mesh建立有限元模型并运用ANSYS进行有限元分析。结果建立具有明确灰质、白质界线以及白质纤维束质的延髓-上颈髓模型;得到不同压迫程度下白质和灰质的应力、应变水平以及应力-应变曲线。结论结合标本病理切片和逆向工程能够建立具有灰质、白质清晰形态和结构的三维延髓-上颈髓模型;延髓-上颈髓受压时灰质的应力水平都小于白质,20%左右压迫程度是白质的临界状态,当病情发展超过临界状态时,白质生物力学性能可能失效,由此引起灰质损伤。
Objective The three-dimensional( 3 D) solid model of medulla oblongata-upper cervical spinal cord based on specimen pathological section data was established,and the stress and strain levels of medulla oblongata-upper cervical spinal cord under dentate process compression were obtained by finite element analysis,so as to provide references for clinical research. Methods Mimics was used to process the slice data,so as to establish the point cloud model. SolidWorks was used to locate,edit and optimize the point cloud model,so as to establish the 3 D solid model. HyperMesh was used to establish the finite element model and ANSYS was used for finite element analysis. Results The medulla oblongata-upper cervical spinal cord model with clear boundary between gray matter and white matter and white matter fiber bundle was established. The stress and strain levels and stress-strain curves of white matter and gray matter under different compression degrees were obtained.Conclusions Combined with pathological sections of specimens and reverse engineering,the 3 D medulla oblongata-upper cervical spinal cord model with clear morphology and structure of gray/white matter can be established. When the medulla oblongata-upper cervical spinal cord is compressed,the stress level of gray matter is lower than that of white matter,and about 20% of compression is the critical state of white matter. When the disease develops beyond the critical state,the biomechanical properties of white matter may fail,resulting in gray matter damage.
作者
孟春玲
聂斌
尹一恒
马立鹏
王华伟
MENG Chunling;NIE Bin;YIN Yiheng;MA Lipeng;WANG Huawei(School of Materials Science and Mechanical Engineering,Beijing Technology and Business University,Beijing W0048,China;Department of Neurosurgery,the First Medical Center of Chinese PLA General Hospital,Beijing 100853,China)
出处
《医用生物力学》
EI
CAS
CSCD
北大核心
2021年第1期36-40,共5页
Journal of Medical Biomechanics
基金
国家自然基金科学项目(81571350)。
关键词
病理切片
延髓-上颈髓
逆向工程
有限元分析
pathological section
medulla oblongata-upper cervical spinal cord
reverse engineering
finite element analysis