期刊文献+

K频段斐波那契网格稀疏阵列分析与设计 被引量:1

Analysis and Design of K Band Fibonacci Grid Sparse Array
下载PDF
导出
摘要 针对低轨宽带卫星通信网、5G通信网应用中对K/Ka频段多波束有源相控阵天线的需求,对斐波那契网格阵列进行改进,提出一种大规模低旁瓣稀疏阵列的高效设计方法。首先从数学上对斐波那契网格阵列的栅瓣抑制特性进行解释,进而对阵列进行数值计算和全尺寸三维电磁仿真,最后结合实际工程应用给出一种K频段高密度集成有源相控阵多波束天线的阵面及射频芯片的布板方案。这种大间距阵列在大扫描角域和大带宽内具有低副瓣、无栅瓣、高增益等优良特性,非常适用于通信应用中的高密度集成有源相控阵天线。 For the demands of K/Ka band multibeam active phased array antenna in low Earth orbit(LEO)wideband satellite communication networks and 5G networks application,an efficient design method of large scale low side lobes sparse array based on Fibonacci grid is presented.The grating lobe suppression priority of Fibonacci grid is explained in mathematics,followed with numerical evaluation and full scale three dimensional electromagnetic simulation of several antenna arrays.A schematic layout of radiation elements and radio frequency integrated circuits(RFICs)of a super-integrated K band multibeam active phased array is demonstrated.Featured by low side lobes,non-grating lobes,high gain in wide scan angles and wide frequency band,this kind of large spacing array is adequate for the super-integrated phased array in communication.
作者 温剑 阳昆 姚亚利 侯禄平 WEN Jian;YANG Kun;YAO Yali;HOU Luping(Southwest China Institute of Electronic Technology,Chengdu 610036,China)
出处 《电讯技术》 北大核心 2021年第4期488-495,共8页 Telecommunication Engineering
关键词 有源相控阵天线 稀疏圆阵 栅瓣抑制 斐波那契网格 连分式展开 active phased array antenna sparse circular array grating lobe suppression Fibonacci grid continued fraction
  • 相关文献

参考文献3

二级参考文献63

  • 1焦永昌,杨科,陈胜兵,张福顺.粒子群优化算法用于阵列天线方向图综合设计[J].电波科学学报,2006,21(1):16-20. 被引量:58
  • 2彭祥龙.用遗传算法优化任意稀布率的平面阵列[J].电讯技术,2007,47(3):153-158. 被引量:4
  • 3[34]Liang Xu,et al.. Fractal linear arrays[J]. Chinese Physics Letters,1998,15(2):140~142. 被引量:1
  • 4[35]D.H.Werner,et al.. The generation of sum and difference patterns using fractal subarrays[J]. Microwave and Optical Technology Letters,July 1999,22(1):54~57. 被引量:1
  • 5[36]Burke.G.J.et al..NumericalElectromagnetic code(NEC)-method of moments[R]. Technical document, NOSC TD116,LawrenceLivemoreLaboratory,1981. 被引量:1
  • 6[37]Richard E.Hogdes,et al.. An iterative current-based hybrid method for complex structures[J]. IEEE Trans. Antennas Propag. 1997, 45(2):265~276. 被引量:1
  • 7[38]Carles Puente Baliarda,et al.. An iterative model for fractal antenna: application to the Sierpinski gasket antenna[J]. IEEE Trans. Antennas Propag. 2000, 48(5): 713~719. 被引量:1
  • 8[39]C.Borja,et al.. Iterative network model to predict the behaviour of a Sierpinski fractal network[J]. Electronics Letters, July 23,1998,34(15):1443~1445. 被引量:1
  • 9[40]R.V.HaraPrasad,et al.. Microstrip fractal patch antenna for multi-band communication[J].Electronics Lett.,2000 36(14): 1179~1180. 被引量:1
  • 10[41]C.Borja,et al.. High directivity fractal boundary microstrip patch antenna[J]. Electronics Letters, 2000 36(9),:778~779. 被引量:1

共引文献31

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部