期刊文献+

基于优化InceptionV1的视频火焰超像素检测方法 被引量:5

Detection Method for Video Flame Super-Pixel Based on Optimized InceptionV1
原文传递
导出
摘要 针对传统火焰检测模型的检测准确度较低和速度慢等问题,提出一种优化的卷积神经网络和超像素分割算法的视频火焰区域检测方法。首先使用火焰图像数据集对模型进行训练和验证,采用卷积核堆叠替换的方法改进Inception模块的结构;其次采用小卷积核替换的方法改进网络的前端结构,并将Focal-Loss函数作为损失函数以提高模型的泛化能力;然后设计InceptionV1模型的参数复杂度优化实验,生成优化的火焰检测网络结构;最后将超像素分割算法提取的火焰超像素语义信息输入优化的InceptionV1模型中,并进一步执行视频火焰区域的定位检测。实验结果表明,所提方法能够增强视频火焰的非线性特征提取能力,火焰检测准确度高于96%,检测速度较原始模型提升2.66倍。 To address the low detection accuracy and slow speed of traditional flame detection model,a video flame region detection method based on optimal convolutional neural network and hyperpixel segmentation algorithm is proposed.First,the flame image dataset is used to train and verify the model,and the structure of the Inception module is improved by stacking and replacing the convolution kernel.Second,the small convolution kernel replacement is adopted to improve the front-end structure of the network,and the Focal-Loss function is used as the loss function to improve the generalization ability of the model.Next,the parameter complexity optimization experiment of the InceptionV1 model is designed to generate an optimized flame detection network structure.Finally,the flame super-pixel semantic information extracted by the superpixel segmentation algorithm is input into the optimized InceptionV1 model,and the location detection of the video flame area is further performed.Experimental results show that the proposed method can enhance the nonlinear feature extraction of video flames;the accuracy of flame detection is higher than 96%,and the detection speed is 2.66 times that of the original model.
作者 邓军 姚涵文 王伟峰 李钊 梁策 Deng Jun;Yao Hanwen;Wang Weifeng;Li Zhao;Liang Ce(School of Electrical and Control Engineering,Xi'an University of Science and Technology,Xi'an,Shaanxi 710054,China;School of Safety Science and Engineering,Xi'an University of Science and Technology,Xi'an,Shaanxi 710054,China)
出处 《激光与光电子学进展》 CSCD 北大核心 2021年第2期68-77,共10页 Laser & Optoelectronics Progress
基金 陕西省重点研发计划(2017ZDCXL-GY-01-02-03,2017ZDXM-SF-092) 西安科技大学优秀青年科技基金(2019Q2-01)。
关键词 图像处理 火焰检测 卷积神经网络 卷积核堆叠替换 参数复杂度优化 超像素定位 image processing fire detection convolutional neural network convolution kernel stack replacement parameter complexity optimization super-pixel localization
  • 相关文献

参考文献5

二级参考文献36

  • 1张进华,庄健,杜海峰,王孙安.一种基于视频多特征融合的火焰识别算法[J].西安交通大学学报,2006,40(7):811-814. 被引量:37
  • 2Robinson E Pino, Michael Moore, Jason Rogers, et al. A co- lumnar V1/V2 visual cortex model and emulation using a PS3 Cell BE array [C] //The International Joint Conference on Neural Networks, 2011: 1667-1674. 被引量:1
  • 3Ciresan D, Ueli Meier, Juergen Schmidhuber. Muhicolumn deep neural networks for image classification [C]//IEEE Com- puter Society Conference on Computer Vision and Pattern Re- cognition, 2012 : 3642-3649. 被引量:1
  • 4Qiao Hong, Li Yinlin, Tang Tang, et al. Introducing memo- ry and association mechanism into a biologically inspired visual model [J]. IEEE Transactions on Cybernetics, 2013, 44 (9) : 1485-1496. 被引量:1
  • 5Mutch J, Lowe D G. Object class recognition and localization using sparse features with limited receptive fields [J]. Interna- tional Journal of Computer Vision, 2008, 80 (1): 45-57. 被引量:1
  • 6Muja M, Lowe D G. Fast matching of binary features [C] // Ninth Conference on Computer and Robot Vision, 2012: 404-410. 被引量:1
  • 7Duraid Abdullah, Iqbal Murtza, Asifullah Khan. Feature ex- traction and reduction strategy based on pyramid HOG and hie- rarchal exploitation of cortex like mechanisms [C] //16th In- ternational Multi Topic Conference, 2013: 160-165. 被引量:1
  • 8Jia Cheng Ni, Yue Lei Xu. SAP, automatic target recognition based on a visual cortical system [C] //International Congress on Image and Signal Processing, 2013: 778-787. 被引量:1
  • 9Norbert Kruger, Peter Janssen, Sinan Kalkan, et al. Deep hierarchies in the primate visual cortex: What can we learn for computer vision [J]. Pattern Analysis and Machine Intelli- gence, 2013, 35 (8): 1847-1871. 被引量:1
  • 10Cheng Y, Su S Z, Li S Z. Combine histogram intersection kernel with linear kernel for pedestrian elassfieation [C] // IET International Conference on Information Science and Con trol Engineering, 2012: 1-3. 被引量:1

共引文献58

同被引文献25

引证文献5

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部