期刊文献+

融入景点标签的矩阵分解个性化推荐

Matrix Decomposition Personalized Recommendation Algorithm Fused with Attractions Tags
下载PDF
导出
摘要 基于标签的推荐算法在景点推荐领域取得了良好效果,但仍然存在一些问题,如仅采用用户对景点的评分值表示用户对标签的喜爱程度,忽略了用户、标签、景点之间的关联,从而导致结果精度不高。提出一种融入景点标签的矩阵分解个性化推荐方法,通过文本挖掘技术构建适用于景点推荐领域的景点标签,并将其引入矩阵分解推荐算法的因子向量,然后利用矩阵分解技术深入挖掘用户、标签、景点之间的潜在联系,从而预测用户对景点标签的感兴趣程度,最终通过用户对景点标签的感兴趣程度以及景点对标签的隶属度预测用户对景点的评分值。实验结果表明,该方法相比基于用户的协同过滤景点推荐算法,MAE和RMSE分别降低68.28%、61.23%,相比基于标签的协同过滤景点推荐算法,MAE和RMSE分别降低67.02%、59.93%,其性能明显优于现有相关景点推荐算法,能够为景点推荐提供有力支撑。 The tag-based recommendation algorithm has achieved good results in the field of attraction recommendation,but there are still some problems.For example,only the user’s rating value of the attraction is used to indicate the user’s preference for tags,ignor⁃ing the relationship between users,tags,and attractions.As a result,the accuracy of the result is not high.This paper proposed a person⁃alized recommendation method of matrix factorization fused with attractions tags.This method uses text mining technology to construct scenic spot tags suitable for the field of scenic spot recommendation,and introduces them into the factor vector of the matrix factoriza⁃tion recommendation algorithm,and then uses matrix factorization technology to deeply explore the potential connections between us⁃ers,tags,and scenic spots to predict users.The degree of interest in the tag of the scenic spot is finally predicted by the user’s degree of interest in the tag of the scenic spot and the degree of membership of the scenic spot to the tag.The experimental results show that the method proposed in this paper reduces the MAE and RMSE of the user-based collaborative filtering attraction recommendation algo⁃rithm by 68.28%and 61.23%,respectively,and reduces the MAE and RMSE respectively compared to the tag-based collaborative fil⁃tering attraction recommendation algorithm 67.02%and 59.93%,its performance is significantly better than the existing related attrac⁃tions recommendation algorithm,which can provide strong support for attraction recommendation.
作者 张鑫 许璐璐 ZHANG Xin;XU Lu-lu(College of Geodesy and Geomatics,Shandong University of Science and Technology,Qingdao 266590,China;Yantai Yufeng Geological Technology Service Co.,Ltd.,Yantai 264010,China)
出处 《软件导刊》 2021年第4期199-204,共6页 Software Guide
关键词 矩阵分解 景点标签 协同过滤 个性化推荐 文本挖掘 matrix decomposition attraction label collaborative filtering personalized recommendation text mining
  • 相关文献

参考文献12

二级参考文献65

  • 1李全,许新华,刘兴红,林松.融合隐含信任度和项目关联度的矩阵分解推荐算法[J].计算机应用研究,2020,37(2):401-406. 被引量:5
  • 2李涛,王建东,叶飞跃,冯新宇,张有东.一种基于用户聚类的协同过滤推荐算法[J].系统工程与电子技术,2007,29(7):1178-1182. 被引量:70
  • 3Beerli A. , Martin J. D. Tourists' characteristics and the perceived image of tourist destinations: a quantitative analysis-a case study of Lanzarote, Spain [ J ]. Tourism Management, 2004, ( 25 ) : 623 - 636. 被引量:1
  • 4Echtner C. M. , Ritchie J. R. B. The meaning and measurement of destination inure [J]. Journal of Travel Studies,1991, (2) :2 -12. 被引量:1
  • 5Jenkins O. H. Understanding and measuring lourist destination images [J]. International Journal of Tourism Research, 1999, ( 1 ) : 1 - 15. 被引量:1
  • 6Crouch G I, Ritchie J R B. Tourism, competitiveness, and societal prosperity[J]. Journal of Business Research, 1999, (44) :137 - 152. 被引量:1
  • 7曾元显.关键词自动提取技术与相关词反馈.中国图书馆学报,1997,. 被引量:2
  • 8李原.中文文本分类中分词和特征选择方法研究[D].长春:吉林大学,2011. 被引量:5
  • 9Gerard Salton, Christopher Buckley. Term-weighting Approaches iu Automatic Text Retrieval [ J ]. Information Processing & Man- agement, 1988, 24(5 ) :513-523. 被引量:1
  • 10章成志.自动标引研究的回顾与展望[J].现代图书情报技术,2007(11):33-39. 被引量:39

共引文献199

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部