期刊文献+

基于BERT及双向GRU模型的慕课用户评论情感倾向性分析 被引量:5

Analysis of Emotional Tendency of MOOC User Comments Based on BERT and Bidirectional GRU Model
下载PDF
导出
摘要 以实现慕课网用户评论的情感倾向性分析为目的,本文提出一种基于BERT和双向GRU模型的用户评论情感倾向性分类方法。首先使用BERT模型提取课程评论文本的特征表示,其次将获取的词语特征输入BiGRU网络实现用户评论的情感特征的提取,最后用Softmax逻辑回归的方式进行情感倾向性分类。实验结果表明基于BERT和双向GRU模型的评论情感倾向性分类模型的F1值达到92.5%,提高了用户情感倾向性分析的准确率,从而验证了方法的有效性。 For the purpose of realizing the sentimental analysis of the user reviews of MOOC,this article proposes a method for the sentimental classification of user reviews based on the BERT and BiGRU model.The article uses the BERT model to extract the feature representation of the course review text,and the acquired words features are input to the BiGRU network to extract the emotional features of user reviews,finally the emotional tendency classification is performed by Softmax logistic regression.Experimental results show that the F1 value of the review sentiment orientation classification model based on BERT and BiGRU model reaches 92.45%,which improves the accuracy of user sentiment orientation analysis and is better than other mainstream orientation analysis models,proving the effectiveness of the method.
作者 尼格拉木·买斯木江 艾孜尔古丽·玉素甫 Nigara Masimjan;Azragul Yusuf(College of Computer Science and Technology,Xinjiang Normal University,Urumqi 830054,China)
出处 《计算机与现代化》 2021年第4期20-26,共7页 Computer and Modernization
基金 新疆维吾尔自治区自然科学基金资助项目(2017D01A58)。
关键词 课程评论 文本情感分析 中文文本分类 BERT-BiGRU course reviews text sentiment analysis Chinese text classification BERT-BiGRU
  • 相关文献

参考文献10

二级参考文献96

  • 1张红,陆谊.基于数据挖掘的电信欺诈侦测模型[J].微计算机信息,2005,21(06X):44-45. 被引量:6
  • 2朱嫣岚,闵锦,周雅倩,黄萱菁,吴立德.基于HowNet的词汇语义倾向计算[J].中文信息学报,2006,20(1):14-20. 被引量:327
  • 3娄德成,姚天昉.汉语句子语义极性分析和观点抽取方法的研究[J].计算机应用,2006,26(11):2622-2625. 被引量:64
  • 4徐琳宏,林鸿飞,杨志豪.基于语义理解的文本倾向性识别机制[J].中文信息学报,2007,21(1):96-100. 被引量:123
  • 5姚天昉,等.一个用于汉语汽车评论的意见挖掘系统[A].中文信息处理前沿进展-中国中文信息学会二十五周年学术会议论文集[C].北京:清华大学出版社,2006,260-281. 被引量:5
  • 6S.-M. Kim and E. Hovy. Determining the Sentiment of Opinions [A]. In: Proceedings of COLING-04, the Conference on Computational Linguistics (COLING-2004) [C]. Geneva, Switzerland: 2004, 1367-1373. 被引量:1
  • 7J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack. Sentiment Analyzer; Extracting Sentiments about a Given Topic using Natural Language Processing Techniques [A]. In: Proceedings of the 3rd IEEE International Conference on Dala Mining (ICDM-2003) [C]. Melbourne, Florida: Z003, 427-434. 被引量:1
  • 8M. Hu and B. Liu. Mining Opinion Features in Cus tomer Reviews [A]. In: Proceedings of Nineteeth Na tional Conference on Artificial Intellgience (AAAI 2004) [C]. San Jose, USA: 2004. 被引量:1
  • 9A. M. Popescu and O. Etzioni. Extracting Product Features and Opinions from Reviews [A]. In: Proceedings of HI.T EMNLP-05, the Human Language Technology Conference/Conference on Empirical Methods in Natural Language Processing [C]. Vancouver, Canada.. 2005, 339-346. 被引量:1
  • 10X. Cheng. Automatic Topic Term Detection and Sentiment Classification for Opinion Mining [D]. Master Thesis. Saarbr cken, Germany: The University of Saarland, 2007. 被引量:1

共引文献350

同被引文献37

引证文献5

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部