摘要
虹膜识别面临两个重要的问题:一是如何精细分解与重构虹膜球面图像;二是如何识别虹膜图特征。虹膜表面几何位置信息是一种重要的信号,传统的虹膜识别通常使用虹膜图像的平面特征,然而人的眼睛是一种球体,从平面图像难以提取到虹膜球体的几何特征。针对平面特征容易出现虹膜纹理的扭曲和失真等问题,该文建议一种正交对称的球面Haar小波(OSSHW)基,对球面虹膜信号进行多尺度分解与重构,获得更精细的虹膜曲面几何特征,同时对比球谐函数和半正交或正交球面Haar小波基的虹膜球面信号特征提取能力。在此基础上,该文提出一种基于卷积神经网络(CNN)和正交对称的球面Haar小波的虹膜识别方法,它能够有效捕获虹膜球体曲面的局部精细特征,比半正交或正交球面Haar小波基具有更强的虹膜识别能力。
Iris recognition faces two important issues.they are how to decompose finely and reconstruct the spherical image of the iris,and how to identify the characteristics of the iris.Conventional iris recognition uses usually the planar features of these iris images.However,the human eye is a sphere.The geometric position information of the iris surface is an important signal,but it is difficult to extract the geometric features of the iris sphere from the planar image.Considering the issue that the plane features are prone to distortion and lack fidelity of iris texture,an Orthogonal and Symmetric Spherical Haar Wavelet(OSSHW)basis is proposed to decompose and reconstruct the spherical iris signal to obtain stronger geometric features of iris surface.The comparison of the feature extraction ability to spherical signal by the spherical harmonics and the typical semiorthogonal or nearly orthogonal spherical Haar wavelet is also presented.And then,an iris recognition method based on Convolutional Neural Networks(CNN)+OSSHW is proposed,which can effectively capture the local fine features of iris spherical surface,and has stronger ability in iris recognition than semi-orthogonal or nearly orthogonal spherical Haar wavelet bases.
作者
贾博
冯孝鑫
李军
俞碧婷
赵倩
吴奇
JIA Bo;FENG Xiaoxin;LI Jun;YU Biting;ZHAO Qian;WU Qi(China Eastern Technology Application R&D Center Co.Ltd.,Shanghai 201707,China;School of Electronic,Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China;University of Wollongong,Wollongong 2500,Australia)
出处
《电子与信息学报》
EI
CSCD
北大核心
2021年第4期939-947,共9页
Journal of Electronics & Information Technology
基金
国家自然科学基金(U1933125)。
关键词
虹膜识别
球面Haar小波基
球面信号
正交对称
Iris recognition
Spherical Haar wavelet basis
Spherical signals
Orthogonal and symmetric