期刊文献+

Double Penalized Quantile Regression for the Linear Mixed Effects Model 被引量:1

原文传递
导出
摘要 This paper proposes a double penalized quantile regression for linear mixed effects model,which can select fixed and random effects simultaneously.Instead of using two tuning parameters,the proposed iterative algorithm enables only one optimal tuning parameter in each step and is more efficient.The authors establish asymptotic normality for the proposed estimators of quantile regression coefficients.Simulation studies show that the new method is robust to a variety of error distributions at different quantiles.It outperforms the traditional regression models under a wide array of simulated data models and is flexible enough to accommodate changes in fixed and random effects.For the high dimensional data scenarios,the new method still can correctly select important variables and exclude noise variables with high probability.A case study based on a hierarchical education data illustrates a practical utility of the proposed approach.
出处 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2020年第6期2080-2102,共23页 系统科学与复杂性学报(英文版)
基金 the National Social Science Fund under Grant No.17BJY210。
  • 相关文献

参考文献2

二级参考文献35

  • 1[1]Lindley D V,Smith A F M.Bayes estimates for the linear model.Journal of the Royal Statistical Society,Series B,1972,34:1-41 被引量:1
  • 2[2]Smith A F M.A general Bayesian linear model.Journal of the Royal Statistical Society,Series B,1973,35:67-75 被引量:1
  • 3[3]Mason W M,Wong G M,Entwistle B.Contextual Analysis Through the Multilevel Linear Model.In:Leinhardt S,ed.Sociological Methodology,San Francisco:Jossey-Bass,1983,72-103 被引量:1
  • 4[4]Goldstein H.Multilevel Statistical Models.2nd ed,New York:John Wiley,1995 被引量:1
  • 5[5]Elston R C,Grizzle J E.Estimation of time response curves and their confidence bands.Biometrics,1962,18:148-159 被引量:1
  • 6[6]Laird N M,Ware H.Random-effects models for longitudinal data.Biometrics,1982,38:963-974 被引量:1
  • 7[7]Longford N.A fast scoring algorithm for maximum likelihood estimation in unbalanced models with nested random effects.Biometrika,1987,74:817-827 被引量:1
  • 8[8]Singer J D.Using SAS PROC MIXED to fit multilevel models,hierarchical models and individual growth models.Journal of Educational and Behavioral Statistics,1998,23:323-355 被引量:1
  • 9[9]Rosenberg B.Linear regression with randomly dispersed parameters.Biometrika,1973,60:61-75 被引量:1
  • 10[10]Longford N.Random Coefficient Models.Oxford:Clarendon,1993 被引量:1

共引文献19

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部