期刊文献+

三维点云数据压缩技术研究综述 被引量:7

A brief overview 3D point cloud data compression technology
下载PDF
导出
摘要 点云作为一种新型的描述三维空间的数据类型,逐渐成为计算机视觉应用的研究热点。点云数据一般由激光雷达或三维立体相机获取,与传统二维图像相比,其需要处理的数据量呈指数倍增加,对数据的存储和传输提出了更高的挑战。通过归纳国际标准组织在点云压缩技术领域最新研究成果,分析对比各类压缩算法的特点,总结下一步研究需要解决的问题,探讨未来的研究方向和思路。 As a new data type of three-dimensional space description,point cloud has gradually become a research focus in the application of computer vision.Point cloud is generally acquired by Lidar or 3D camera.Compared with traditional two dimension image,the amount of data to be processed increases exponentially which brings great challenges to the storage and transmission of data.The latest research of international standard organization on point cloud compression are concluded.The characteristics of various compression algorithms are analyzed and compared.The research direction of point cloud compression and problems to be solved in the further research are discussed.
作者 艾达 卢洪颖 杨玉蓉 刘芸宏 卢津 刘颖 AI Da;LU Hongying;YANG Yurong;LIU Yunhong;LU Jin;LIU Ying(The Key Laboratory of Electronic Information Application Technology of Site-survey of The Ministry of Public Security,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;School of Communications and Information Engineering,Xi'an University of Posts and Telecommunications,Xi'an 710121,China;International Joint Research Center for Wireless Communication and Information Processing Technology,Xi'an University of Posts and Telecommunications,Xi'an 710121,China)
出处 《西安邮电大学学报》 2021年第1期90-96,共7页 Journal of Xi’an University of Posts and Telecommunications
基金 陕西省教育厅专项科学研究计划项目(18JK0716,19JK0810)。
关键词 点云压缩 数据降维 视频编码 计算机视觉应用 point cloud compression data dimensionality reduction video coding computer vision applications
  • 相关文献

参考文献2

二级参考文献15

  • 1李晓明,郑链,胡占义.基于SIFT特征的遥感影像自动配准[J].遥感学报,2006,10(6):885-892. 被引量:153
  • 2耿国华,西北大学学报,1996年,4期 被引量:1
  • 3唐荣锡,计算机图形学教程,1990年,327页 被引量:1
  • 4杨燕,王雪瑞,戴青,付江柳.球面全景图像生成技术的研究[J].计算机应用与软件,2007,24(10):164-165. 被引量:10
  • 5Seo S, Jeonz S, l.ee S. Efficient homography estima- tion method for panorama[C]//Frontiers of Computer Vision,(FCV), 2013 19th Korea-Japan Joint Work- shop on. Incheon:IEEE, 2013: 209-212. 被引量:1
  • 6Kim B S, Lee S H, Cho N I. Real-time panorama can- vas of natural images[J]. Consumer ELectronics, IEEE Transactions on, 2011, 57(4) : 1961-1968. 被引量:1
  • 7Bo G, Cao J, Zhou Z, et al. A robust image registra- tion algorithm used for panoramic image mosaie[C]// Image Analysis and Signal Processing (IASP), 2012 International Conference on. Hangzhou: IEEE, 2012 :1-4. 被引量:1
  • 8Lowe.D G. Object recognition from local scale-invari- ant features[C]//Computer vision, 1999. The pro- ceedings of the seventh IEEE international conference on. Kerkyra:IEEE, 1999: 1150-1157. 被引量:1
  • 9Lowe D G. Distinctive image features from scale-invar- iant keypoints [J]. International journal of computer vision, 2004, 60(2): 91-110. 被引量:1
  • 10Mikolajczyk K, Schmid C. Scale & affine invariant in- terest point detectors[J]. International journal of com- puter vision, 2004, 60(1):63-86. 被引量:1

共引文献16

同被引文献82

引证文献7

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部